Neonatal respiratory distress syndrome, previously called hyaline membrane disease, is a respiratory disease affecting premature newborns. Neonatal respiratory distress syndrome involves shallow breathing, pauses between breaths that last a few seconds, or apnea, and a bluish tinge to the infant’s skin. The syndrome occurs when microscopic sacs called alveoli in infant lungs do not produce surfactant, a liquid that coats the inside of the lungs and helps them inflate during breathing. Respiratory distress syndrome is the leading cause of death among premature infants and, in rare cases, it can affect full-term infants. Physicians can administer artificial, animal-derived surfactant to treat respiratory distress syndrome. As of 2017, the treatment has decreased the mortality rate of respiratory distress syndrome from almost one hundred percent to less than ten percent.
John Chassar Moir lived in Scotland during the twentieth century and helped develop techniques to improve the health of pregnant women. Moir helped to discover compounds that doctors could administer to women after childbirth to prevent life-threatening blood loss. Those compounds included the ergot alkaloid called ergometrine, also called ergonovine, and d-lysergic acid beta-propanolamide. Moir tested ergometrine in postpartum patients and documented that it helped prevent or manage postpartum hemorrhage in women. Moir also developed methods to treat tears between the bladder and the vagina, called vesico-vaginal fistulas, that occur due to complications of childbirth, and that cause urinary incontinence in women who have them.
In 1996, the US Congress mandated that the US Environmental Protection Agency (EPA) create and regulate the Endocrine Disruptor Screening Program. The program tests industrial and agricultural chemicals for hormonal impacts in humans and in wildlife that may disrupt organisms' endocrine systems. The endocrine system regulates the release of small amounts of chemical substances called hormones to keep the body functioning normally. Some chemicals can impede the endocrine system's function by mimicking or blocking hormone reception, which can disrupt processes of development and reproduction and harm organisms. As of 2017, the Endocrine Disruptor Screening Program is the largest US program to identify and regulate chemicals that affect the normal production of sex hormones like estrogen and androgen, which can have long-term effects on development and reproduction.
Isidore Geoffroy Saint-Hilaire studied anatomy and congenital abnormalities in humans and other animals in nineteenth century France. Under the tutelage of his father, Etienne Geoffroy Saint-Hilaire, Isidore compiled and built on his father's studies of individuals with developmental malformations, then called monstrosities. In 1832, Isidore published Histoire generale et particuliere des anomalies de l'organisation chez l'homme et les animaux (General and Particular History of Structural Monstrosities in Man and Animals), in which he defined the term teratology as the study of birth defects and deformities. Isidore Geoffroy Saint-Hilaire established teratology as a legitimate branch of scientific study.
Truman William Brophy developed a cleft palate surgical repair, later called the Brophy Operation, in the late nineteenth century US. The procedure improved facial aesthetics and speech in cleft palate patients. A cleft palate occurs during development when the palatal bones in the roof of the mouth don't completely fuse, leaving an opening, or cleft, in the upper lip and mouth. Brophy's cleft repair used compression inside and outside of the mouth to push the palatal bones into normal alignment shortly after birth. Brophy advocated surgery on newborns with cleft palates as soon as possible after birth, which met with opposition in the late nineteenth and early twentieth centuries when medical professionals did not operate on infants for non-life threatening conditions. However, Brophy's successful operations convinced many doctors to adopt his technique.
In the 1950s and 1960s, researchers Leon Chesley, John Annitto, and Robert Cosgrove investigated the possible familial factor for the conditions of preeclampsia and eclampsia in pregnant women. Preeclampsia and eclampsia, which are related to high blood pressure, have unknown causes and affect at least five percent of all pregnancies. The researchers, who worked at Margaret Hague Maternity Hospital in Jersey City, New Jersey, used hospital patient records to find and reexamine women who had eclampsia at the hospital, as well as their daughters, sisters, daughters-in-law, and granddaughters. Chesley and colleagues found that the daughters and granddaughters of eclamptic women were more likely than the female offspring of non-eclamptic women to have preeclampsia and eclampsia in their own pregnancies, and especially in their first pregnancies. The study provided evidence that the disorders are inherited, enabling physicians to better monitor pregnancies in women who have a known family history for preeclampsia and eclampsia.
Neonatal jaundice is the yellow discoloration of the skin and eyes due to elevated bilirubin levels in the bloodstream of a newborn. Bilirubin is a byproduct of the breakdown of red blood cells. Jaundiced infants are unable to process bilirubin at a normal rate or they have an abnormally high amount of bilirubin in their bloodstream, resulting in a buildup of the yellow colored bilirubin. That build up is called hyperbilirubinemia and is the cause of jaundice. Jaundice can lead to kernicterus, a rare neurological disorder that results in hearing loss, permanent brain damage, and sometimes death. Research into the causes of jaundice and kernicterus began in the late eighteenth century in Paris, France. By the middle of the twentieth century, scientists developed treatments for jaundice that successfully treated infants afflicted with the condition, phototherapy and blood exchange transfusion, due to these treatments, the risk for an infant in developing kernicterus is very low.
Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the body and l-TGA where some oxygenated blood circulates. In the US, the Centers for Disease Control estimate that about 1,901 infants are born each year with TGA, or about one for every 2,000 births. Throughout history, physicians classified TGA as a condition that causes blue babies and hypothesized it was a fatal condition. With the development of corrective surgeries, studies on the causes of TGA, and improved prenatal diagnosis have allowed for the survival rate for those with TGA to approach almost one hundred percent.
Dandy-Walker Syndrome is a congenital brain defect in humans characterized by malformations to the cerebellum, the part of the brain that controls movement, and to the ventricles, the fluid-filled cavities that surround the cerebellum. The syndrome is named for physicians Walter Dandy and Arthur Walker who described associated signs and symptoms of the syndrome in the 1900s. The malformations often develop during embryonic stages. In early infancy, symptoms include slow motor development and a progressive enlargement of the skull due to cerebrospinal fluid accumulation called hydrocephalus. The prognosis of Dandy-Walker syndrome is highly variable, ranging from minor or negligible birth defects to profound malformations, disability, or early death.
The Martius flap procedure is a surgical procedure used to treat obstetric fistulas in women. Heinrich Martius developed the procedure in twentieth century Germany to treat women with urinary incontinence caused by stress, and later doctors used it to repair obstetric fistulas. Fistulas occur in pregnant women when a hole is torn between the vagina and the urinary tract (called vesicovaginal) or the vagina and the rectum (called rectovaginal). The hole, or fistula, occurs in the tissue separating two organs and therefore obstetric fistulas result in either urinary or fecal incontinence. Fistulas can occur due to surgery, injury, or chemotherapy, but they most commonly occur in pregnant women who experience prolonged labor and do not have adequate access to obstetric care. As a result of the Martius flap procedure, patients regain functional use of their vaginas without continued urinary or fecal incontinence.