In the 1999 case Olmstead v. L.C., hereafter Olmstead, the United States Supreme Court held in a six to three decision that the forced segregation of people based on disability violated the Americans with Disabilities Act. Two women with mental and intellectual disabilities, Lois Curtis and Elaine Wilson, referred to as L.C. and E.W. in case documents, sued the state of Georgia and Tommy Olmstead, the Commissioner of Georgia who headed the Department of Human Resources, for alleged violations of the Americans with Disabilities Act. The two women each voluntarily admitted themselves to treatment in the state-run Georgia Regional Hospital in Atlanta, Georgia, in 1990. After doctors cleared Curtis and Wilson for transfer into a community-based health setting with non-disabled people, the hospital denied them treatment in a community-based setting due to the financial costs of such treatment and the lack of space. Olmstead protected the rights of people with disabilities outlined in the Americans with Disabilities Act by finding the unjustified segregation of disabled people unconstitutional.

In 1975, the United States Congress passed the Individuals with Disabilities Education Act, referred to as the IDEA, which codified the right of all American children to a free and appropriate public education regardless of disability status. The IDEA requires all public schools that accept federal funds to provide education that meets the needs of students with disabilities at the public expense. Prior to IDEA, many students with disabilities went without any educational opportunities, and many faced confinement in institutions. The IDEA enshrined the right to education for children with disabilities, allowing millions of children to learn in a public-school classroom by setting guidelines for accessibility and the instruction of students with disabilities in American public schools.

Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.

Methylmercury (MeHg) is an organic form of mercury that can damage the developing brains of human fetuses. Women who consume methylmercury during pregnancy can bear children who have neurological issues because methylmercury has toxic effects on the nervous system during embryonic development. During the third week of gestation, the human nervous system begins to form in the embryo. During this gestational period, the embryo's nervous system is particularly susceptible to the influence of neurotoxins like methylmercury that can result in abnormalities. Furthermore, the fetal brain can incur damage despite the lack of signs of poisoning in the pregnant woman. In children, defects due to methylmercury can result in deficits in attention, behavior, cognition, and motor skills.

William Thornton Mustard was a surgeon in Canada during the twentieth century who developed surgical techniques to treat children who had congenital heart defects. Mustard has two surgeries named after him, both of which he helped to develop. The first of these surgeries replaces damaged or paralyzed muscles in individuals who have polio, a virus that can cause paralysis. The other technique corrects a condition called the transposition of the great arteries (TGA) that is noticed at birth. Surgeons worldwide adopted that technique, leading to increased survival rates in infants afflicted with the condition. Mustard also published over 100 articles on congenital heart defects, surgical techniques, and the preparation of an artificial heart lung machine. Mustard helped perform the first blood transfusion of a newborn whose red blood cells (RBCs) had degraded, a condition called hemolytic anemia. Throughout his career, Mustard developed surgical techniques that increased the survival rates of infants and children with congenital and developmental disorders.

In 1990, researcher Jane Hurst and her colleagues published “An Extended Family With a Dominantly Inherited Speech Disorder,” in which they proposed that a single gene was responsible for a language disorder across three generations of a family. Affected individuals of the family, called the KE family, had difficulty producing, expressing and comprehending speech. Hurst and her team studied the KE family and the disorder at the Department of Clinical Genetics at the Great Ormond Street Hospital for Children in London, England. Their report was subsequently published in the journal Developmental Medicine and Child Neurology in 1990. The authors’ conclusions helped researchers better describe and explain language as a developmental and biological phenomenon and led later researchers to discover the proposed gene, mutations to which caused the language disorder.

Hydrocephalus is a congenital or acquired disorder characterized by the abnormal accumulation of cerebrospinal fluid within the cavities of the brain, called ventricles. The accumulation of cerebrospinal fluid, the clear fluid surrounding the brain and spinal cord, causes an abnormal widening of the ventricles. The widening creates potentially harmful pressure on the tissues of the brain that can result in brain damage or death. The most obvious sign of hydrocephalus is the rapid increase in head circumference or an unusual large head size due to the accumulation of cerebrospinal fluid in the brain. In infants, hydrocephalus can be caused by congenital factors such as malformations of the brain, or acquired factors such as tumors, cysts, meningitis, or bleeding. Treatment after the infant is born can lead to normal cognitive and physical development with few limitations.

Sprayed extensively by the US military in Vietnam, Agent Orange contained a dioxin contaminant later found to be toxic to humans. Despite reports by Vietnamese citizens and Vietnam War veterans of increased rates of stillbirths and birth defects in their children, studies in the 1980s showed conflicting evidence for an association between the two. In 1996, the US National Academy of Sciences reported that there was evidence that suggested dioxin and Agent Orange exposure caused spina bifida, a birth defect in which the spinal cord develops improperly. The US Department of Veterans Affairs' subsequent provision of disability compensation for spina bifida-affected children marked the US government's first official acknowledgement of a link between Agent Orange and birth defects. By 2016, spina bifida and related neural tube defects were the only birth defects associated with Agent Orange.

The Mustard Operation is a surgical technique to correct a heart condition called the transposition of the great arteries (TGA). TGA is a birth defect in which the placement of the two arteries, the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body are switched. William Thornton Mustard developed the operation later named for him and in 1963 operated on an infant with TGA, and ameliorated the condition, at the Hospital for Sick Children in Toronto, Canada. Afterwards, the Mustard Operation became the primary form of corrective surgery for TGA, until the arterial switch operation largely replaced the Mustard Operation by the late 1990s. The Mustard Operation enabled surgeons to correct TGA in infants born with the life-threatening anomaly, increasing their life spans and quality of life.

Spina bifida is a birth defect that affects the spines of developing fetuses and infants, and research in the 20th century indicated that chemicals in the herbicide Agent Orange likely lead to the birth defect. People with spina bifida can have nerve damage, paralysis, and mental disabilities. During the Vietnam War in the 1960s, the US military employed Agent Orange and other herbicides to destroy enemy crops and forest cover until 1970. Though studies of the link between Agent Orange exposure and birth defects were at first inconclusive, in 1995 the US National Academy of Sciences concluded that one birth defect, spina bifida, was associated with paternal Agent Orange exposure. Spina bifida was, by the twenty-first century, the only birth defect that the US Veterans Administration connected to Agent Orange exposure.

Subscribe to Disorders