Emil Kraepelin was a physician who studied people with mental illness in the late nineteenth and early twentieth centuries in modern-day Germany. Kraepelin's examination and description of the symptoms and outcomes of mental illness formed the basis for his classification of psychiatric disorders into two main groups, dementia praecox, now called schizophrenia, and manic-depressive psychosis, now called bipolar disorder. He was one of the first physicians to suggest that those researching mental illness should gain scientific knowledge only through close observation and description. However, Kraepelin also believed that genetics played a role in the development and course of mental illness and characterized mentally ill people as weak-willed, which some have argued contributed to stigma about mental illnesses that persist today. Although some historians have pointed out issues with Kraepelin’s teachings, Kraepelin helped to establish psychiatry as a clinical science, which prompted future experimental investigations into mental illness.
William John Little was one of the first orthopedic surgeons to research congenital malformations and their causes in the nineteenth century and presented preliminary research on a condition modernly known as cerebral palsy, a condition of varying severity that affects a person’s ability to move. Little worked throughout the United Kingdom for the majority of the time he practiced medicine, and eventually founded one of the first orthopedic infirmaries, the Royal Orthopedic Hospital in London, England. Throughout his career, Little studied congenital malformations, which are medical conditions inherited before birth, as well as how certain medical circumstances during delivery affect the neonate. In 1861, he described a condition with motor, behavioral, and cognitive irregularities in neonates, linked with oxygen deprivation during birth. Little’s research on that condition, originally called Little’s disease, and modernly, spastic cerebral palsy, was one of the first accounts of cerebral palsy in infants.
To address the international Human Immunodeficiency Virus epidemic, the World Health Organization, or WHO, developed three drug treatment regimens between 2010 and 2012 specifically for HIV-positive pregnant women and their infants. WHO developed the regimens, calling them Option A, Option B, and Option B+, to reduce or prevent mother-to-child, abbreviated MTC, transmission of HIV. Each option comprises of different types and schedules of antiretroviral medications. As of 2018, WHO reported that in Africa alone about 1,200,000 pregnant women were living with untreated HIV. Those women have up to a forty-five percent chance of transmitting HIV to their offspring if they do not receive treatment. Option B+ has decreased the overall maternal mortality rates in many low- and middle-income countries, and numerous studies have supported the notion that it is the most effective of the three regimens for preventing MTC transmission of HIV.
Prenatal exposure to alcohol (ethanol) results in a continuum of physical and neurological developmental abnormalities that vary depending on the timing, duration, and degree of alcohol exposure. Heavy exposure during development may lead to the condition Fetal Alcohol Syndrome (FAS), characterized by growth deficits, neurological deficiencies and minor facial abnormalities. Alcohol is a known teratogen, an agent that causes birth defects and acts upon developing embryos through mechanisms that are not yet fully understood. One of the better understood developmental effects of alcohol relates to the minor facial abnormalities associated with FAS, particularly the role that the gene sonic hedgehog (shh) plays in the regulation of craniofacial defects. In comparative animal studies, maternal exposure to alcohol results in the massive decrease of shh and shh transcription factors in affected cell populations. However, the exogenous application of shh to the developing embryo has shown limited success in reversing this expression, thereby restoring a normative pattern of craniofacial development in the affected embryo.
Maternal consumption of alcohol (ethanol) during pregnancy can result in a continuum of embryonic developmental abnormalities that vary depending on the severity, duration, and frequency of exposure of ethanol during gestation. Alcohol is a teratogen, an environmental agent that impacts the normal development of an embryo or fetus. In addition to dose-related concerns, factors such as maternal genetics and metabolism and the timing of alcohol exposure during prenatal development also impact alcohol-related birth defects.
Prenatal exposure to alcohol (ethanol) can result in a continuum of developmental abnormalities that are highly variable depending on the severity, duration, frequency, and timing of exposure during gestation. Defects of the corpus callosum (CC) have proven to be a reliable indicator of prenatal alcohol exposure as it affects the brain. Structural abnormalities of the CC occur along a continuum, like most alcohol-induced anomalies, whereby more severe prenatal exposure results in a greater expression of the abnormal trait. A variety of cognitive deficiencies are associated with defects of the fetal CC, the morphology of which can vary greatly between individuals and can be observed through neuroimaging over a broad transect of life stages.
The spinal column is the central structure in the vertebrate body from which stability, movement, and posture all derive. The vertebrae of the spine are organized into four regions (listed in order from cranial to caudal): cervical, thoracic, lumbar, and pelvic. These regions are classified by their differences in curvature. The human spine usually consists of thirty-three vertebrae, seven of which are cervical (C1-C7), twelve are thoracic (T1-T12), five are lumbar (L1-L5), and nine are pelvic (five fused as the sacrum and four fused as the coccyx).
Emma Wolverton, also known as Deborah Kallikak, lived her entire life in an institution in New Jersey after psychologist Henry Goddard classified her as feeble-minded. He also wrote a book about Wolverton and her family that psychiatrists previously used to show that intellectual disability is hereditary. At the time, researchers in the psychology field, including Goddard, were working to understand differences in people’s intellectual abilities. They used the term feeble-minded to refer to those they described as having lower intellectual functioning. While Wolverton spent nearly her entire life living and working in institutions for the feeble-minded, more recent investigations of her life show she was not what is now considered intellectually disabled. Wolverton’s involvement in Goddard’s research as Deborah Kallikak influenced twentieth century ideas around the heritability and treatment of those with disabilities.
A variety of developmental defects occur as a result of prenatal exposure to alcohol (ethanol) in utero. In humans, those defects are collectively classified as Fetal Alcohol Spectrum Disorders, with Fetal Alcohol Syndrome (FAS) representing the more severe defects. FAS is defined by pre- and post-natal growth retardation, minor facial abnormalities, and deficiencies in the central nervous system (CNS). In addition to those defects, prenatal exposure to alcohol impacts cardiogenesis, the developmental stage of heart formation.
In 2000, Catherine Monk, William Fifer, Michael Myers, Richard Sloan, Leslie Trien, and Alicia Hurtado published “Maternal stress responses and anxiety during pregnancy: Effects on fetal heart rate,” in which the authors conducted a study on how pregnant women’s stress and anxiety affects the health of their fetuses. Previous studies had shown that stress and anxiety during pregnancy could cause fetal abnormalities. In their article, Monk and colleagues reported that the fetuses of anxious pregnant women were more likely to have elevated heart rates and increased stress when exposed to stressors than fetuses of non-anxious women. The authors’ findings indicated that fetuses of anxious women display more biological markers of stress than fetuses of non-anxious women.