Hans Asperger studied mental abnormalities in children in Vienna, Austria, in the early twentieth century. Asperger was one of the early researchers who studied the syndrome that was later named after him, Asperger's Syndrome. Asperger described the syndrome in his 1944 publication Die Autistischen Psychopathen im Kindesalter (Autistic Psychopathy in Childhood). At that time, the syndrome was called autistic psychopathy, and Asperger noted that characteristics of the syndrome included lack of sympathy, one-sided conversations, and difficulty forming friendships. Asperger's work led to the recognition of Asperger's Syndrome as a disorder that results from abnormal development, and the syndrome was later classed on the autism spectrum.

Walter Edward Dandy studied abnormalities in the developing human brain in the United States in the twentieth century. He collaborated with pediatrician Kenneth Blackfan to provide the first clinical description of Dandy-Walker Syndrome, a congenital brain malformation in which the medial part of the brain, called the cerebellar vermis, is absent. Dandy also described the circulation of cerebral spinal fluid, the clear, watery fluid that surrounds and cushions the brain and spinal cord. That description led Dandy to examine how the impeded flow of cerebral spinal fluid caused congenital hydrocephalus, which occurs when fluid accumulates in the brain causes it to swell. Dandy discovered brain anomalies that primarily develop during embryonic development, and his work helped to detect brain abnormalities.

Arthur Earl Walker was a medical researcher and physician who studied the brain and neurosurgery in the United States during the twentieth century. Walker examined the connections of the thalamus to the rest of the brain and how the thalamus coordinates sensory signals. The thalamus is a cluster of nerve cells located between the two hemispheres of the brain and it is responsible for consciousness and sensory interpretation. While studying the thalamus, Walker noticed that cerebral spinal fluid, the clear fluid surrounding the brain and spinal cord, sometimes became obstructed in certain parts of the brain in infants. Scientists linked the cerebral spinal fluid obstruction with a congenital brain malformation, later called Dandy-Walker Syndrome. Walker's work on the brain and cerebral spinal fluid enabled early diagnosis and treatment for complications in the development of the brain.

Hydrocephalus is a congenital or acquired disorder characterized by the abnormal accumulation of cerebrospinal fluid within the cavities of the brain, called ventricles. The accumulation of cerebrospinal fluid, the clear fluid surrounding the brain and spinal cord, causes an abnormal widening of the ventricles. The widening creates potentially harmful pressure on the tissues of the brain that can result in brain damage or death. The most obvious sign of hydrocephalus is the rapid increase in head circumference or an unusual large head size due to the accumulation of cerebrospinal fluid in the brain. In infants, hydrocephalus can be caused by congenital factors such as malformations of the brain, or acquired factors such as tumors, cysts, meningitis, or bleeding. Treatment after the infant is born can lead to normal cognitive and physical development with few limitations.

Dandy-Walker Syndrome is a congenital brain defect in humans characterized by malformations to the cerebellum, the part of the brain that controls movement, and to the ventricles, the fluid-filled cavities that surround the cerebellum. The syndrome is named for physicians Walter Dandy and Arthur Walker who described associated signs and symptoms of the syndrome in the 1900s. The malformations often develop during embryonic stages. In early infancy, symptoms include slow motor development and a progressive enlargement of the skull due to cerebrospinal fluid accumulation called hydrocephalus. The prognosis of Dandy-Walker syndrome is highly variable, ranging from minor or negligible birth defects to profound malformations, disability, or early death.

Subscribe to Alexandra Bohnenberger