The Mustard Operation is a surgical technique to correct a heart condition called the transposition of the great arteries (TGA). TGA is a birth defect in which the placement of the two arteries, the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body are switched. William Thornton Mustard developed the operation later named for him and in 1963 operated on an infant with TGA, and ameliorated the condition, at the Hospital for Sick Children in Toronto, Canada. Afterwards, the Mustard Operation became the primary form of corrective surgery for TGA, until the arterial switch operation largely replaced the Mustard Operation by the late 1990s. The Mustard Operation enabled surgeons to correct TGA in infants born with the life-threatening anomaly, increasing their life spans and quality of life.
Transposition of the great arteries or TGA is a potentially fatal congenital heart malformation where the pulmonary artery and the aorta are switched. The switch means that the aorta, which normally carries oxygenated blood, carries deoxygenated blood. There are two types of the malformation, d-TGA where no oxygen reaches the body and l-TGA where some oxygenated blood circulates. In the US, the Centers for Disease Control estimate that about 1,901 infants are born each year with TGA, or about one for every 2,000 births. Throughout history, physicians classified TGA as a condition that causes blue babies and hypothesized it was a fatal condition. With the development of corrective surgeries, studies on the causes of TGA, and improved prenatal diagnosis have allowed for the survival rate for those with TGA to approach almost one hundred percent.
The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great arteries, abbreviated TGA, also called transposition of the great vessels, abbreviated TGV. TGA occurs when the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body, are switched, or transposed. The switch between the aorta and pulmonary artery results in dangerously low levels of oxygen, a condition called cyanosis, in newborn infants, which causes them to die if a surgeon does not correct it.
Adib Jatene in Brazil was the first surgeon to successfully perform the arterial switch operation in 1975. The operation corrected a heart condition in infants called transposition of the great arteries (TGA). Left untreated, infants with TGA die, as their blood cannot supply oxygen to their bodies. Jatene’s operation became widely used to correct the condition. Aside from medical research, Jatene worked for years in politics and education, serving as Brazil’s minister of health and teaching thoracic surgery at the University of São Paulo.
The arterial switch operation, also called the Jatene procedure, is an operation in which surgeons redirect the flow of blood through abnormal hearts. In 1975, Adib Jatene conducted the first successful arterial switch operation on a human infant. The arterial switch operation corrects a condition called transposition of the great arteries, abbreviated TGA, also called transposition of the great vessels, abbreviated TGV. TGA occurs when the pulmonary artery, which supplies deoxygenated blood to the lungs, and the aorta, which takes oxygenated blood to the body, are switched, or transposed. The switch between the aorta and pulmonary artery results in dangerously low levels of oxygen, a condition called cyanosis, in newborn infants, which causes them to die if a surgeon does not correct it.
In 1998, researchers Laura Mazzanti and Emanuele Cacciari published “Congenital Heart Disease in Patients with Turner’s Syndrome,” hereafter “Congenital Heart Disease,” in The Journal of Pediatrics. Turner syndrome is a genetic disorder caused by a missing X chromosome and affects one in 1,500 to 2,500 female births. Turner syndrome can result in various developmental issues, such as stunted physical and sexual growth, infertility, and congenital heart disease, or developmental malformations of the heart. At the time of publication, other researchers had established a link between congenital heart defects and Turner syndrome. However, there was little research on the relationship between what specific chromosomal pattern a person had and the types of congenital heart defects that a person presented with. “Congenital Heart Disease” established links between certain types of chromosomal patterns with various congenital heart defects, which the authors argue should allow for improved medical intervention and a better quality of life for people with Turner syndrome.