Anatomical models have always been a mainstay of descriptive embryology. As the training of embryologists grew in the late 1800s, so too did the need for large-scale teaching models. Embryo wax models, such as those made by Adolf Ziegler and Gustav Born, were popular in the latter part of the nineteenth century and the early twentieth century as a way to visualize, in three dimensions, the fine detail of embryos without the aid of a microscope. While these models were found in many university laboratories, museums of science, and even expositions and world's fairs, they were anything but easy to make or obtain. Wax modeling required skill, patience, and specialized tools. Small laboratories with only one or two embryologists often found the prospect of wax modeling too laborious, too difficult, and too expensive to make the pursuit worthwhile. As an alternative, Susanna Phelps Gage, an embryologist at Cornell University, perfected a technique of using stacks of absorbent blotting paper rather than stacks of wax plates for constructing embryo models. She first demonstrated her blotting paper method to other embryologists at the annual meeting of the Association of American Anatomists in 1905 and later at the International Zoological Congress, held in Boston in August 1907.
Magnetic Resonance Microscopy (MRM) is an imaging method that allows the visualization of internal body structures. Using powerful magnets to send energy into cells, MRM picks up signals from inside a specimen and translates them into detailed computer images. MRM is a useful tool for scientists because of its ability to generate digital slices of scanned specimens that can be constructed into virtual 3D images without destroying the specimens. MRM has become an increasingly prevalent imaging technique in embryological studies. Through MRM, the first 3D human embryo images were created as part of the "Multi-Dimensional Human Embryo" project, a public database of three-dimensional embryo images.
First manufactured in 1988 by Serono laboratories, recombinant gonadotropins are synthetic hormones that can stimulate egg production in women for use in fertility treatments. Recombinant gonadotropins are artificially created using recombinant DNA technology, a technology that joins together DNA from different organisms. In vertebrates, naturally-occurring gonadotropins regulate the growth and function of the gonads, known as testes in males and ovaries in females. Medical professionals can derive female gonadotropins from the urine of pregnant and post-menopausal women, often using it to facilitate in vitro fertilization, or IVF. With the rapid development of assisted reproductive technologies like IVF, demand for human-derived gonadotropins rose to a global yearly demand of 120 million liters of urine by the beginning of the twenty-first century, which resulted in a demand that could not be met by traditional technologies at that time. Therefore, researchers created recombinant gonadotropins to establish a safer and more consistent method of human gonadotropin collection that met the high demand for its use in fertility treatments.
Chorionic villus sampling (CVS) is a test used for prenatal diagnosis. Safe to perform at an earlier stage in pregnancy than amniocentesis, CVS is another invasive prenatal diagnostic test that can be performed as early as ten weeks after the woman's last menstrual cycle. While this test does carry some risks, it is generally very effective at predicting heritable diseases during or soon after the embryonic stage of development.