Post-coital oral emergency contraception is used for the prevention of pregnancy after intercourse. The contraception comes in the form of pills, often collectively referred to as morning-after pills. Post-coital use of morning-after pills separates them from traditional contraception which is either a continual preventative process, such as the birth control pill, or used during intercourse, such as condoms. Oral emergency contraception is important to embryology because it represents a significant accomplishment in the human ability to manipulate the process of embryonic development and pregnancy. Though there are still many misunderstandings about the morning-after pills as a contraceptive method, the continued efforts of scientists to carry out research on emergency contraception suggests that the technology may continue to improve and grow into more widespread use.
A designer baby is a baby genetically engineered in vitro for specially selected traits, which can vary from lowered disease-risk to gender selection. Before the advent of genetic engineering and in vitro fertilization (IVF), designer babies were primarily a science fiction concept. However, the rapid advancement of technology before and after the turn of the twenty-first century makes designer babies an increasingly real possibility. As a result, designer babies have become an important topic in bioethical debates, and in 2004 the term "designer baby" even became an official entry in the Oxford English Dictionary. Designer babies represent an area within embryology that has not yet become a practical reality, but nonetheless draws out ethical concerns about whether or not it will become necessary to implement limitations regarding designer babies in the future.
The Multi-Dimensional Human Embryo website (http://embryo.soad.umich.edu/) is a publicly accessible online database of the first three-dimensional images and animations of human embryos during different stages of development. Both the images and animations were created using magnetic resonance microscopy and compiled for easy access. The virtual collection of images is the result of a collaborative project between the University of Michigan, the Center for In Vivo Microscopy at the Duke University Medical Center, and the Human Developmental Anatomy Center at the National Museum of Health and Medicine. The project was funded by the National Institutes of Child Health and Human Development (NICHD). The Multi-Dimensional Human Embryo is the first comprehensive collection of its kind, both in scope, organization, and the 3D nature of the images.
In March 1999 Bradley Richard Smith, a professor at the University of Michigan, unveiled the first digital magnetic resonance images of human embryos. In his article "Visualizing Human Embryos for Scientific American," Smith displayed three-dimensional images of embryos using combinations of Magnetic Resonance Microscopy (MRM), light microscopy, and various computer editing. He created virtual embryo models that it is possible to view as dissections, animations, or in their whole 3D form. Smith's images constitute a new way of visualizing embryos. They served to help students, researchers, clinicians and the general public interested in the study and investigation of human embryonic development.
Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.
Magnetic Resonance Microscopy (MRM) is an imaging method that allows the visualization of internal body structures. Using powerful magnets to send energy into cells, MRM picks up signals from inside a specimen and translates them into detailed computer images. MRM is a useful tool for scientists because of its ability to generate digital slices of scanned specimens that can be constructed into virtual 3D images without destroying the specimens. MRM has become an increasingly prevalent imaging technique in embryological studies. Through MRM, the first 3D human embryo images were created as part of the "Multi-Dimensional Human Embryo" project, a public database of three-dimensional embryo images.