In 1873 Italy, Camillo Golgi created the black reaction technique, which enabled scientists to stain and view the structure of neurons, the specialized cells that compose the nervous system. During the nineteenth century, scientists were studying cells and proposed cell theory, which describes the basic characteristics of cells as fundamental units of life. However, cell theory struggled to explain neurons as they are specialized cells and more complex in structure than cells of other tissues. Prior to Golgi’s black reaction, other neuron staining techniques did not enable scientists to clearly and completely view entire neurons without damaging the tissue and obscuring the form. By enabling scientists to study individual neurons and neural tissues, Golgi’s black reaction enables researchers to better study the nervous system and how it develops.
In October 2013, Jürgen Dinger, Sabine Möhner, and Klaas Heinemann published the article “Cardiovascular Risk Associated With the Use of an Etonogestrel-Containing Vaginal Ring,” hereafter “Cardiovascular Risk,” in the journal Obstetrics and Gynecology. The authors enrolled patients in the study who were new users of either a vaginal contraceptive ring known as NuvaRing or a combined oral contraceptive pill. A combined oral contraceptive pill contains a formulation of the hormones progesterone and estrogen. They followed up with the patients for two to four years after they had started either hormonal contraceptive treatment to record the incidence of specific cardiovascular events. The authors found that the risks of cardiovascular events when starting use of either NuvaRing or a combined hormonal contraceptive pill were similar to each other in the patients they studied. The results of “Cardiovascular Risk” affirmed the results of similar studies and stated that the risk of cardiovascular events was similar in NuvaRing users to other contraceptive users.
Clomiphene citrate, more commonly known by its brand names Clomid and Serophene, is a medication prescribed to women to stimulate ovulation in order to treat infertility. It stimulates ovulation in women who do not ovulate or ovulate irregularly. This drug was created by Dr. Frank Palopoli in 1956 while he worked for Merrell Company. It first successfully induced ovulation in women in 1961 and was approved by the Federal and Drug Administration (FDA) in 1967. This medication can be used to help women conceive naturally, to time ovulation for intrauterine insemination, or to stimulate the maturation of eggs to be extracted and used in procedures such as in vitro fertilization (IVF), gamete intrafallopian transfer (GIFT), and zygote intrafallopian transfer (ZIFT).
Golden Rice was engineered from normal rice by Ingo Potrykus and Peter Beyer in the 1990s to help improve human health. Golden Rice has an engineered multi-gene biochemical pathway in its genome. This pathway produces beta-carotene, a molecule that becomes vitamin A when metabolized by humans. Ingo Potrykus worked at the Swiss Federal Institute of Technology in Zurich, Switzerland, and Peter Beyer worked at University of Freiburg, in Freiburg, Germany. The US Rockefeller Foundation supported their collaboration. The scientists and their collaborators first succeeded in expressing beta-carotene in rice in 1999, and they published the results in 2000. Since then, scientists have improved Golden Rice through laboratory and field trials, but as of 2013 no countries have grown it commercially. Golden Rice is a technology that intersects scientific and ethical debates that extend beyond a grain of rice.
In the twentieth century, researchers developed the oral glucose tolerance test, or OGTT, as a method to diagnose different types of diabetes, a medical condition that causes blood sugar levels to become abnormally high. During the test, a healthcare provider measures a person’s blood sugar levels before and after the person consumes a predetermined amount of glucose solution. While not exclusively used for pregnant women, an OGTT may test for gestational diabetes which, according to the International Diabetes Federation, affected one in six pregnancies worldwide in 2019. Generally, the results from an OGTT can inform a patient and her physician how her body is responding to glucose during pregnancy, and high levels may increase her risk of developing adverse pregnancy outcomes such as heavy bleeding during delivery and a high blood pressure condition known as preeclampsia. An OGTT can help to accurately diagnose, treat, and monitor gestational diabetes in pregnant women, which can reduce health and pregnancy complications for the woman and the fetus.
The Edinburgh Mouse Atlas, also called the e-Mouse Atlas Project (EMAP), is an online resource comprised of the e-Mouse Atlas (EMA), a detailed digital model of mouse development, and the e-Mouse Atlas of Gene Expression (EMAGE), a database that identifies sites of gene expression in mouse embryos. Duncan Davidson and Richard Baldock founded the project in 1992, and the Medical Research Council (MRC) in Edinburgh, United Kingdom, funds the project. Davidson and Baldock announced the project in an article titled A Real Mouse for Your Computer, citing the need to manage and analyze the volume of data that overwhelmed developmental biologists. Though EMAP resources were distributed via CD-ROM in the early years, the project moved increasingly online by the early 2000s, and into the early decades of the twenty-first century, was in active development. EMAP can be utilized as a developmental biology teaching resource and as a research tool that enables scientists to explore annotated 3D virtual mouse embryos. EMAP's goal is to illuminate the molecular basis of tissue differentiation.
Ooplasmic transfer, also called cytoplasmic transfer, is an outside the body, in vitro fertilization (IVF) technique. Ooplasmic transfer in humans (Homo sapiens) is similar to in vitro fertilization (IVF), with a few additions. IVF is the process in which doctors manually combine an egg and sperm cells in a laboratory dish, as opposed to artificial insemination, which takes place in the female's body. For ooplasmic transfer, doctors withdraw cytoplasm from a donor's oocyte, and then they inject that cytoplasm with sperm into a patient's oocyte. Doctors perform ooplasmic transfer to replace mitochondria that have genetic defects, which can cause a variety of diseases. In 1982, Audrey Muggleton-Harris's group at MRC Laboratory Animals Center in Surrey, United Kingdom, developed the technique and reported the first successful mammalian ooplasmic transfer in mice (Mus musculus).
Transvaginal ultrasound-guided oocyte retrieval, also known as egg retrieval, is a surgical technique used by medical professionals to extract mature eggs directly from the women’s ovaries under the guidance of ultrasound imaging. In 1982, physicians Suzan Lenz and Jorgen Lauritsen at the University of Copenhagen in Copenhagen, Denmark, proposed the technology to improve the egg collection aspect of in vitro fertilization, or IVF. During IVF, a healthcare practitioner must remove mature eggs from a woman’s ovaries to fertilize them with sperm outside of the body. Transvaginal ultrasound-guided egg retrieval is a surgery that can be completed in a medical office setting in twenty minutes. Transvaginal ultrasound-guided egg retrieval increased mature egg collection and rates of successful fertilization, becoming the new standard for egg collection in IVF.
Multiplex Automated Genome Engineering, or MAGE, is a genome editing technique that enables scientists to quickly edit an organism’s DNA to produce multiple changes across the genome. In 2009, two genetic researchers at the Wyss Institute at Harvard Medical School in Boston, Massachusetts, Harris Wang and George Church, developed the technology during a time when researchers could only edit one site in an organism’s genome at a time. Wang and Church called MAGE a form of accelerated evolution because it creates different cells with many variations of the same original genome over multiple generations. MAGE made genome editing much faster, cheaper, and easier for genetic researchers to create organisms with novel functions that they can use for a variety of purposes, such as making chemicals and medicine, developing biofuels, or further studying and understanding the genes that can cause harmful mutations in humans.
Breast augmentation involves the use of implants or fat tissue to increase patient breast size. As of 2019, breast augmentation is the most popular surgical cosmetic procedure in the United States, with annual patient numbers increasing by 41 percent since the year 2000. Since the first documented breast augmentation by surgeon Vincenz Czerny in 1895, and later the invention of the silicone breast implant in 1963, surgeons have developed the procedure into its own specialized field of surgery, creating various operating techniques for different results. By having varied incisions, implant placements, and improved ways of treating surgery-related complications, advanced technology has enabled women to undergo breast augmentations for aesthetic, medical, or reconstructive reasons. Trans women may also benefit from breast augmentations. Having the option of a breast augmentation gives women more control over their physical appearance, which may improve their self-image and boost their confidence.