Epidermal growth factor is a signaling molecule that stimulates the growth of epidermal tissues during development and throughout life. Stanley Cohen discovered epidermal growth factor (EGF) during studies of nerve growth factor as a side effect of other experiments. EGF stimulates tissue growth by initiating a variety of cellular mechanisms. This work led to the 1986 Nobel Prize in Physiology or Medicine awarded to Cohen and Rita Levi-Montalcini. At the Nobel Award ceremony Levi-Montalcini focused her acceptance speech on nerve growth factor, while Cohen focused his on epidermal growth factor. Although they presented different topics, they were close collaborators and their combined effort led to the discovery of nerve growth factor. They had worked together in Viktor Hamburger's laboratory at Washington University in St. Louis.
Embryonic differentiation is the process of development during which embryonic cells specialize and diverse tissue structures arise. Animals are made up of many different cell types, each with specific functions in the body. However, during early embryonic development, the embryo does not yet possess these varied cells; this is where embryonic differentiation comes into play. The differentiation of cells during embryogenesis is the key to cell, tissue, organ, and organism identity.
The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers. The gastrula, the product of gastrulation, was named by Ernst Haeckel in the mid-1870s; the name comes from Latin, where gaster means stomach, and indeed the gut (archenteron) is one of the most distinctive features of the gastrula.
When placental mammals are born their circulatory systems undergo radical changes as the newborns are prepared for independent life. The lungs are engaged, becoming the primary source of fresh oxygen, replacing the placental barrier as a means for blood-gas exchange.
The discovery of hematopoietic stem cells (HSCs) provided a pioneering step in stem cell research. HSCs are a type of multipotent adult stem cell, characterized by their ability to self-renew and differentiate into erythrocyte (red blood cell) and leukocyte (white blood cell) cell lineages. In terms of function, these cells are responsible for the continual renewal of the erythrocytes, leukocytes, and platelets in the body through a process called hematopoiesis. They also play an important role in the formation of vital organs such as the liver and spleen during fetal development. The early biological knowledge obtained from the studies of HSCs established the base of knowledge for understanding other stem cell systems. In addition, these cells have a vital role in furthering stem cell research for clinical applications. Regenerative medicine is a field of medicine that has applied HSCs to the treatment of blood-borne diseases such as leukemia and lymphoma and of cancer patients undergoing chemotherapy.
The term homunculus is Latin for "little man." It is used in neurology today to describe the map in the brain of sensory neurons in each part of the body (the somatosensory homunculus). An early use of the word was in the 1572 work by Paracelsus regarding forays into alchemy, De Natura Rerum, in which he gave instructions in how to create an infant human without fertilization or gestation in the womb. In the history of embryology, the homunculus was part of the Enlightenment-era theory of generation called preformationism. The homunculus was the fully formed individual that existed within the germ cell of one of its parents prior to fertilization and would grow in size during gestation until ready to be born.
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research.
Frederik Ruysch, working in the Netherlands, introduced the term epithelia in the third volume of his Thesaurus Anatomicus in 1703. Ruysch created the term from the Greek epi, which means on top of, and thele, which means nipple, to describe the type of tissue he found when dissecting the lip of a cadaver. In the mid nineteenth century, anatomist Albrecht von Haller adopted the word epithelium, designating Ruysch's original terminology as the plural version. In modern science, epithelium is a type of animal tissue in which cells are packed into neatly arranged sheets. The epithelial cells lie proximate to each other and attach to a thin, fibrous sheet called a basement membrane. Epithelia line the surfaces of cavities and structures throughout the body, and also form glands. Although they lack blood vessels, epithelia contain nerves and can function to receive sensation, absorb, protect, and secrete, depending on which part of the body the epithelia line. During development, epithelia act in conjunction with another tissue type, mesenchyme, to form nearly every organ in the body, from hair and teeth to the digestive tract. Epithelia are an essential part of embryonic development and the maintenance and function of the body throughout life.
This embryology image is a pencil sketch by Nicolaas Hartsoeker, published as part of his 1694 French-language paper entitled Essai de Dioptrique, a semi-speculative work describing the sorts of new scientific observations that could be done using magnifying lenses. Dioptrique was published in Paris by the publishing house of Jean Anisson. The image depicts a curled up infant-like human, now referred to as a homunculus, inside the head of a sperm cell. This sketch is important to embryology because it is one of the most illustrative examples of preformationism, a theory of generation stating that each future member of any given species exists, fully formed though miniscule, within the gametic cells (sperm or eggs) of its parents. This theory was popular among naturalists in the eighteenth century.
Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England. The fetal origins hypothesis states that undernutrition in the womb during middle to late pregnancy causes improper fetal growth, which in turn, causes a predisposition to certain diseases in adulthood. In addition to nutritional impacts, researchers have studied the fetal programming effects of many factors, such as maternal anxiety or violence during pregnancy. Researchers proposing the concept of fetal programming established a new area of research into the developmental causes of disease, pointing towards the in utero environment and its critical role in healthy human development.