Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm. Regardless of the presence of two or three layers, endoderm is always the inner-most layer. Endoderm forms the epithelium-- a type of tissue in which the cells are tightly linked together to form sheets-- that lines the primitive gut. From this epithelial lining of the primitive gut, organs like the digestive tract, liver, pancreas, and lungs develop.

Tooth enamel contains relics of its formation process, in the form of microstructures, which indicate the incremental way in which it forms. These microstructures, called cross-striations and striae of Retzius, develop as enamel-forming cells called ameloblasts, whcih cyclically deposit enamel on developing teeth in accordance with two different biological clocks. Cross-striations result from a twenty-four hour cycle, called a Circadian rhythm, in the enamel deposition process, while striae of Retzius have a longer periodicity. Unlike other tissues, enamel does not remodel after it forms, leaving those microstructures intact after deposition. Cross-striations and striae of Retzius thus provide evidence of the timing and processes of tooth development, and they indicate how organisms in a lineage differently grow and develop across generations. Researchers have examined those microstructures to investigate human evolution.

A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation.

The figure depicts three different molecular structures of estrogen found in mammals’ that differ by the arrangement of bonds and side groups. The molecular structures of the three estrogen molecules differ by the arrangement of chemical bonds and side groups attached to the core steroid structure, cholesterol, which contains three cyclohexane rings and one cyclopentane ring.

“Test-tube baby” is a term used to refer to a baby produced through artificial insemination or in vitro fertilization, also called IVF. During artificial insemination, a physician injects carefully selected sperm into a women’s uterus to fertilize her eggs. During IVF, a trained professional harvests eggs from a female donor. Those eggs are fertilized with carefully selected sperm in a petri dish.

This diagram shows how NCCs migrate differently in rats, birds and amphibians. The arrows represent both chronology of NCCs migration and the differential paths that NCCs follow in different classes of animals. The solid black portion of each illustration represents the neural crest, and the large black dots in (c) and in (f) represent the neural crest cells. The speckled sections that at first form a basin in (a) and then close to form a tube in (f) represent the neural ectoderm. The solid white portions represent the epidermal ectoderm.

The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.

Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.

Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.

This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.