Allan C. Wilson studied genes, proteins, and body structures of animals and humans in the US during the second half of the twentieth century. Wilson also studied human evolution. Although morphology and behaviors of humans (Homo sapiens) and great apes differ, Wilson found that they have biochemical and genetic similarities. Wilson and his colleagues calculated the time period of humans' and African apes' common ancestor. Wilson and his team also studied DNA outside of the nucleus in the cellular energy producing particles, called mitochondrial DNA (mtDNA), to study when different human groups evolved from each other.
James M Cummins published 'The Role of Maternal Mitochondria during Oogenesis, Fertilization and Embryogenesis' 30 January 2002 in Reproductive BioMedicine Online. In the article, Cummins examines the role of the energy producing cytoplasmic particles, or organelles called mitochondria. Humans inherit mitochondria from their mothers, and mechanisms have evolved to eliminate sperm mitochondria in early embryonic development. Mitochondria contain their own DNA (mtDNA) separate from nuclear DNA (nDNA). Cummins's article describes how mitochondria influence the development of egg cells called oocytes. Mitochondria also function in the union of oocyte and sperm, early formation of the embryo, and in in vitro fertilization (IVF) techniques, such as the transfer of donor cytoplasm into an oocyte resulting in a technique called ooplasmic transfer.
Lynn Petra Alexander Sagan Margulis was an American biologist, whose work in the mid-twentieth century focused on cells living together in a mutually advantageous relationship, studied cells and mitochondria in the US during the second half of the twentieth century. She developed a theory for the origin of eukaryotic cells, that proposed two kinds of structures found in eukaryotic cells mitochondria in animals, and plastids in plantsÑwere once free-living bacteria that lived harmoniously and in close proximity to larger cells, a scenario called symbiosis. Margulis proposed that the larger cells eventually engulfed the free-living bacteria, resulting in cells living inside other cells, a situation called endosymbiosis. Margulis'theory became called the serial endosymbiosis theory (SET). Her work contributed to explanations of the evolution and development of life, as eukaryotic cells comprise most multicellular organisms, including their embryos.
In 1987 Rebecca Louise Cann, Mark Stoneking, and Allan Charles Wilson published Mitochondrial DNA and Human Evolution in the journal Nature. The authors compared mitochondrial DNA from different human populations worldwide, and from those comparisons they argued that all human populations had a common ancestor in Africa around 200,000 years ago. Mitochondria DNA (mtDNA) is a small circular genome found in the subcellular organelles, called mitochondria. Mitochondria are organelles found outside of the nucleus in the watery part of the cell, called cytoplasm, of most complex cells (eukaryotes). Cann, Stoneking and Wilson collected mtDNA from 147 individuals from five different human geographical populations. Cann, Stoneking, and Wilson used mtDNA sequences to study the genetic differences and migration patterns of the human population through female inheritance. Mammals inherit mitochondria and mtDNA from their mothers through the egg cell (oocyte), and mitochondria are responsible for several maternally inherited diseases.
Mitochondrial DNA (mtDNA) is located outside the nucleus in the liquid portion of the cell (cytoplasm) inside cellular organelles called Mitochondria. Mitochondria are located in all complex or eukaryotic cells, including plant, animal, fungi, and single celled protists, which contain their own mtDNA genome. In animals with a backbone, or vertebrates, mtDNA is a double stranded, circular molecule that forms a circular genome, which ranges in size from sixteen to eighteen kilo-base pairs, depending on species. Each mitochondrion in a cell can have multiple copies of the mtDNA genome. In humans, the mature egg cell, or oocyte, contains the highest number of mitochondria among human cells, ranging from 100,000 to 600,000 mitochondria per cell, but each mitochondrion contains only one copy of mtDNA. In human embryonic development, the number of mitochondria, the content of mtDNA in each mitochondrion, and the subsequent mtDNA activity affects the production of the oocytes, fertilization of the oocytes, and early embryonic growth and development.
All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms. Around two billion years ago, mitochondria took up residence inside larger cells, in a process called endosymbiosis, becoming functional parts of those cells. Within each mitochondrion is the mitochondrial DNA (mtDNA), which is different from the DNA in the cell's nucleus (nDNA). Organisms inherit their mitochondria only from their mothers via egg cells (oocytes). Mitochondria contribute to the development of oocytes, the release of the oocyte from the ovary (ovulation), the union of oocyte and sperm (fertilization), all stages of embryo formation (embryogenesis), and growth of the embryo after fertilization.
Mitochondrial diseases in humans result when the small organelles called mitochondria, which exist in all human cells, fail to function normally. The mitochondria contain their own mitochondrial DNA (mtDNA) separate from the cell's nuclear DNA (nDNA). The main function of mitochondria is to produce energy for the cell. They also function in a diverse set of mechanisms such as calcium hemostasis, cell signaling, regulation of programmed cell death (apoptosis), and biosynthesis of heme proteins that carry oxygen. When mitochondria fail to fulfill those functions properly in the cell, many different maladies, including death, can occur. Humans inherit mitochondria from the mother through the egg cell, and all the mtDNA molecules in a person are identical to each other. But the mutation rate is much higher in the mtDNA than in nuclear DNA, and some individuals may have more than one type of mtDNA. As egg cells develop, they divide via a process called meiosis. As egg cells divide, mitochondria of different types can randomly segregate in some new cells but not in others. As a result, two offspring from the same female might differ in their types of mitochondria. Random amounts of the two mitochondria types can lead to some offspring inheriting a mitochondrial disease or developmental abnormalities while others are normal.
Mitochondria are organelles found in the cytoplasm of eukaryotic cells. They are composed of an outer membrane and an inner membrane. The outer membrane faces the cellular cytoplasm, while the inner membrane folds back on itself multiple times, forming inner folds, called cristae. The space between the two membrane layers is called the intermembrane space, and the space within the inner membrane is called the matrix.