In his 1991 article Screening for Congenital Hypothyroidism, Delbert A. Fisher in the US reported on the implementation and impact of mass neonatal screening programs for congenital hypothyroidism (CH) from the early 1970s through 1991. CH is a condition that causes stunted mental and physical development in newborns unless treatment begins within the first three months of the newborn's life. In the early 1970s, regions in Canada and the US had implemented screening programs to diagnose and treat CH as quickly as possible after the infant's birth. By 1991 many other countries had adopted the early screening program, and Fisher estimated that 10 to 12 million newborns per year were tested in the early 1990s. The screening programs, along with physician education and improved screening techniques, such as radioimmunoassay, helped significantly reduce the incidence of abnormal newborn development resulting from untreated congenital hypothyroidism.
Solomon A. Berson helped develop the radioimmunoassay (RIA) technique in the US during the twentieth century. Berson made many scientific contributions while working with research partner Rosalyn Yalow at the Bronx Veterans Administration (VA) hospital, in New York City, New York. In the more than twenty years that Berson and Yalow collaborated, they refined the procedures for tracing diagnostic biological compounds using isotope labels. In the late 1950s they developed the RIA based on the ability to trace the competition between and ligands, or small molecules that bind to specific sites of other biomolecules, and proteins for the same molecular binding site, a process called competitive binding. Scientists widely used Berson and Yalow's RIA, as these methods permit the use of a minimal sample of blood for accurate measurements of biological molecules such as hormones that cause the production of antibodies. Berson and Yalow's research has advanced the study of physiology, including that of the reproductive system, with particular applications to the diagnosis and treatment of infertility.
Rosalyn Sussman Yalow co-developed the radioimmunoassay (RIA), a method used to measure minute biological compounds that cause immune systems to produce antibodies. Yalow and research partner Solomon A. Berson developed the RIA in the early 1950s at the Bronx Veterans Administration (VA) Hospital, in New York City, New York. Yalow and Berson's methods expanded scientific research, particularly in the medical field, and contributed to medical diagnostics. For this achievement, Yalow received the Nobel Prize in Physiology or Medicine in 1977. The RIA technique is used to measure more than one hundred biochemical substances, including infectious agents, narcotics, and hormones, such as those used to diagnose infertility and hypothyroidism.
From 1987 to the late 1990s, James Haddow and his team of researchers at the Foundation for Blood Research in Scarborough, Maine, studied children born to women who had thyroid deficiencies while pregnant with those children. Haddow's team focused the study on newborns who had normal thyroid function at the time of neonatal screening. They tested the intelligence quotient, or IQ, of the children, ages eight to eleven years, and found that all of the children born to thyroid-hormone deficient mothers performed less well than the control group. Haddow and his colleagues published the experiment and results, Maternal Thyroid Deficiency during Pregnancy and Subsequent Neuropsychological Development of the Childin 1999. Haddow and his team proposed that undetected low thyroid hormone production in mothers, or maternal hypothyroidism, could adversely affect the neuropsychological development of children.
Radioimmunoassay (RIA) is a technique in which researchers use radioactive isotopes as traceable tags to quantify specific biochemical substances from blood samples. Rosalyn Yalow and Solomon Berson developed the method in the 1950s while working at the Bronx Veterans Administration (VA) Hospital in New York City, New York. RIA requires small samples of blood, yet it is extremely sensitive to minute quantities of biological molecules within the sample. The use of RIA improved the accuracy of many kinds of medical diagnoses, and it influenced hormone and immune research around the world. Before the RIA was developed, other methods that detected or measured small concentrations of biochemical substances required large samples of blood-- often too large for researchers to collect. With the development of RIA, researchers could use a single drop of blood to detect and measure the concentration of some biochemical substances. By 1970 doctors used RIA to measure follicle stimulating and luteinizing hormones to diagnose and treat infertility in women. Further developments led to neonatal screening programs for hypothyroidism.
Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans, was published in 1993 in Environmental Health Perspectives. In the article, the authors present an account of two decades' worth of scientific research that describes the effects of certain pollutants on the health of wildlife, domestic animals, and humans, particularly when exposure takes place during embryonic growth. The term endocrine disruptor was coined in the article to describe the chemical pollutants that target the development and function of the endocrine system. Since its publication, Developmental Effects has increased research interest in endocrine disruption and has raised awareness among the general public, the scientific community, and government organizations about the effects that some chemicals may have on development and reproduction.