In a series of experiments between 1960 and 1965, Robert Geoffrey Edwards discovered how to make mammalian egg cells, or oocytes, mature outside of a female's body. Edwards, working at several research institutions in the UK during this period, studied in vitro fertilization (IVF) methods. He measured the conditions and timings for in vitro (out of the body) maturation of oocytes from diverse mammals including mice, rats, hamsters, pigs, cows, sheep, and rhesus monkeys, as well as humans. By 1965, he manipulated the maturation of mammalian oocytes in vitro, and discovered that the maturation process took about the same amount of time as maturation in the body, called in vivo. The timing of human oocyte maturation in vivo, extrapolated from Edwards's in vitro study, helped researchers calculate the timing for surgical removal of human eggs for IVF.
Rachel L. Carson studied biology at Johns Hopkins University in Maryland and graduated in 1933 with an MA upon the completion of her thesis, The Development of the Pronephros during the Embryonic and Early Larval Life of the Catfish (Ictalurus punctatus). The research that Carson conducted for this thesis project grounded many of the claims and observations she presented in her 1962 book, Silent Spring. This book focused on the environmental dangers of using pesticides against insects and plants deemed invasive, and it received attention from the US government, to such an extent that Carson testified before US congress in Washington D.C., and US President John F. Kennedy appointed a commission to validate her claims.
In the early 1960s, John W. Saunders Jr., Mary T. Gasseling, and Lilyan C. Saunders in the US investigated how cells die in the developing limbs of chick embryos. They studied when and where in developing limbs many cells die, and they studied the functions of cell death in wing development. At a time when only a few developmental biologists studied cell death, or apoptosis, Saunders and his colleagues showed that researchers could use embryological experiments to uncover the causal mechanisms of apotosis. The researchers published many of their results in the 1962 paper 'Cellular death in morphogenesis of the avian wing.'
Frank Rattray Lillie's research on freemartins from 1914 to 1920 in the US led to the theory that hormones partly caused for sex differentiation in mammals. Although sometimes applied to sheep, goats, and pigs, the term freemartin most often refers to a sterile cow that has external female genitalia and internal male gonads and was born with a normal male twin. Lillie theorized that a freemartin is a genetic female whose process of sexual development from an undifferentiated zygote was suppressed or antagonized by her twin's release of male hormones via their shared blood circulation in utero. Despite publications of similar findings by physician Julius Tandler in Vienna, Austria, in 1910 and physician Karl Keller in Wiesensteig, Germany in 1916 prior to Lillie's research, Lillie often receives credit for the hormonal theory of sex differentiation in the freemartin. Lillie's study of freemartins, and the subsequent research by graduate students in Lillie's laboratory at the University of Chicago in Chicago, Illinois, prompted many embryologists to research sex differentiation and hermaphroditism in mammals.
Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists. Francois Jacob and Jacques Monod used lysogenic bacteria to develop their operon model of gene regulation, to investigate the cellular regulatory mechanisms of the lysogenic life cycle, and to infer the process of cellular differentiation in the development of more complex eukaryotes.
In the 1990s, Ian Wilmut, Jim McWhir, and Keith Campbell performed experiments while working at the Roslin Institute in Roslin, Scotland. Wilmut, McWhir, and Campbell collaborated with Angelica Schnieke and Alex J. Kind at PPL Therapeutics in Roslin, a company researching cloning and genetic manipulation for livestock. Their experiments resulted in several sheep being born in July 1996, one of which was a sheep named Dolly born 5 July 1996. Dolly was the first sheep cloned and developed from the nuclei of fully differentiated adult cells, rather than from the nuclei of early embryonic cells. They published their results in Viable Offspring Derived from Fetal and Adult Mammalian Cells (abbreviated Viable Offspring) on 27 February 1997.
In 2004, a team of researchers at Tufts-New England Medical Center in Boston, Massachusetts, investigated the fetal cells that remained in the maternal blood stream after pregnancy. The results were published in Transfer of Fetal Cells with Multilineage Potential to Maternal Tissue. The team working on that research included Kiarash Khosrotehrani, Kirby L. Johnson, Dong Hyun Cha, Robert N. Salomon, and Diana W. Bianchi. The researchers reported that the fetal cells passed to a pregnant woman during pregnancy could develop into multiple cell types in her organs. They studied these differentiated fetal cells in a cohort of women fighting different diseases. The researchers found that the fetal cells in the women differentiated into different cell types under the influence of maternal tissues, and that those differentiated cells concentrated in the tissue surrounding diseased tissues. According to the team, this response could be a therapeutic response to the disease in the once pregnant woman. The research indicated the long lasting effects of pregnancy in a woman's body.
In 1972, David Whittingham, Stanley Leibo, and Peter Mazur published the paper, “Survival of Mouse Embryos Frozen to -196 ° and -269 °C,” hereafter, “Survival of Mouse Embryos,” in the journal Science. The study marked one of the first times that researchers had successfully cryopreserved, or preserved and stored by freezing, a mammalian embryo and later transferred that embryo to a live mouse who gave birth to viable offspring. Previously, scientists had only been successful cryopreserving single cells, like red blood cells. Mammalian embryos, on the other hand, were more difficult to cryopreserve because they are more complex and therefore more easily weakened or destroyed by the formation of ice within its cells. Whittingham, Leibo, and Mazur’s work provided a successful model for mammalian embryo cryopreservation, a technology that later expanded to cryopreserve more complex embryos, such as human embryos.
Paul Kammerer conducted experiments on amphibians and marine animals at the Vivarium, a research institute in Vienna, Austria, in the early twentieth century. Kammerer bred organisms in captivity, and he induced them to develop particular adaptations, which Kammerer claimed the organismss offspring would inherit. Kammerer argued that his results demonstrated the inheritance of acquired characteristics, or Lamarckian inheritance. The Lamarckian theory of inheritance posits that individuals transmit acquired traits to their offspring. Kammerer worked during a period in which scientists debated how variation between organisms and within species was caused, and how organisms could inherit that variation from their parents. Kammerer contended that the inheritance of acquired characteristics occurs during embryological development, but several scientists argued that he provided poor evidence for his claims.
At the turn of the twentieth century, Edmund B. Wilson performed experiments to show where germinal matter was located in molluscs. At Columbia University in New York City, New York, Wilson studied what causes cells to differentiate during development. In 1904 he conducted his experiments on molluscs, and he modified the theory about the location of germinal matter in the succeeding years. Wilson and others modified the theory of germinal localization to accommodate results that showed the significance of chromosomes in development and heredity.