Rachel L. Carson studied biology at Johns Hopkins University in Maryland and graduated in 1933 with an MA upon the completion of her thesis, The Development of the Pronephros during the Embryonic and Early Larval Life of the Catfish (Ictalurus punctatus). The research that Carson conducted for this thesis project grounded many of the claims and observations she presented in her 1962 book, Silent Spring. This book focused on the environmental dangers of using pesticides against insects and plants deemed invasive, and it received attention from the US government, to such an extent that Carson testified before US congress in Washington D.C., and US President John F. Kennedy appointed a commission to validate her claims.

In the case Whitner v. South Carolina in 1997, the South Carolina State Supreme Court defined the concept of a child to include viable fetuses. This allowed grounds for prosecution of a pregnant womanÕs prenatal activity if those activities endangered or could potentially endanger the fetus within her. The case brought the issue of fetal rights versus pregnant womenÕs rights to light. The case also explored whether or not the conviction of a pregnant woman was in the best interest of a fetus, because fear of prosecution could lead the woman to not seek prenatal care or to seek an abortion outside of licensed clinics.

In 2001, Kevin M. Godfrey and David J.P. Barker published the article “Fetal Programming and Adult Health” in Public Health Nutrition, where they identified the significance of maternal nutrition during pregnancy to healthy offspring development. The authors describe the effects of maternal nutrition on fetal programming of cardiovascular disease. Fetal programming is when a specific event during pregnancy has effects on the fetus long after birth. The authors argue that fetuses may adapt to varying shifts in their environment in utero, such as slowed fetal growth in response to malnutrition. While those adaptations can be helpful in utero, the authors assert they may persist into adolescence and adulthood, causing conditions such as high blood pressure or diabetes. Godfrey and Barker assert that fetal adaptations to maternal malnutrition may be implicated in the development of cardiovascular disease in adulthood, and called for future research investigating additional fetal programming variables.

In 2017, Laura Geer and colleagues published the results of a study investigating the effects of parabens and antimicrobial compounds on birth outcomes in the article “Association of Birth Outcomes with Fetal Exposure to Parabens, Triclosan and Triclocarban in an Immigrant Population in Brooklyn, New York” in the Journal of Hazardous Materials. Parabens are a class of preservatives found in cosmetic and pharmaceutical products and antimicrobial compounds are compounds that kill microorganisms such as bacteria. In the University Hospital of Brooklyn’s Prenatal Clinic in New York City, New York, the authors tested the concentration of parabens and certain antimicrobial substances in pregnant women’s urine and umbilical cord blood plasma, finding that the concentration of one of the substances, triclocarban, may affect many health outcomes for the developing fetus. The authors’ results demonstrate how some common consumer products, in large quantities, may have harmful reproductive effects and birth outcomes.

In humans, sex determination is the process that determines the biological sex of an offspring and, as a result, the sexual characteristics that they will develop. Humans typically develop as either male or female, primarily depending on the combination of sex chromosomes that they inherit from their parents. The human sex chromosomes, called X and Y, are structures in human cells made up of tightly bound deoxyribonucleic acid, or DNA, and proteins. Those are molecules that contain the instructions for the development and functioning of all life forms, including the development of physical traits and body parts that correspond with each biological sex. Humans who inherit two X chromosomes typically develop as females, while humans with one X and one Y chromosome typically develop as males. Sex determination is the beginning of the development of many characteristics that influence how a human looks and functions as well as the societal expectations that other humans have for each other.

In 2004, Amanda J. Drake and Brian R. Walker published “The Intergenerational Effects of Fetal Programming: Non-genomic Mechanisms for the Inheritance of Low Birth Weight and Cardiovascular Risk,” hereafter, “The Intergenerational Effects,” in the Journal of Endocrinology. In their article, the authors assert that cardiovascular disease may develop via fetal programming, which is when a certain event occurring during a critical point of pregnancy affects the fetus long after birth. Drake and Walker were among the first to show that the programming effects of cardiovascular disease could be sustained across generations through non-genetic means. In “The Intergenerational Effects,” the authors identify how non-genetic mechanisms may perpetuate fetal programming influences over generations, highlighting the importance for further research on fetal programming.

In 2001, researchers Leonie Welberg and Jonathan Seckl published the literature review “Prenatal Stress, Glucocorticoids, and the Programming of the Brain,” in which they report on the effects of prenatal stress on the development of the fetal brain. The fetus experiences prenatal stress while in the womb, or in utero. In discussing the effects of prenatal stress, the authors describe prenatal programming, which is when early environmental experiences permanently alter biological structure and function throughout life. Throughout “Prenatal Stress, Glucocorticoids and the Programming of the Brain,” Welberg and Seckl provide a number of potential biological explanations, derived from both animal and human studies, to explain the underlying mechanisms involved in programming, which helped establish how in utero stress can affect fetal brain development.

Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England. The fetal origins hypothesis states that undernutrition in the womb during middle to late pregnancy causes improper fetal growth, which in turn, causes a predisposition to certain diseases in adulthood. In addition to nutritional impacts, researchers have studied the fetal programming effects of many factors, such as maternal anxiety or violence during pregnancy. Researchers proposing the concept of fetal programming established a new area of research into the developmental causes of disease, pointing towards the in utero environment and its critical role in healthy human development.

Subscribe to Embryonic and Fetal Development