In 2006, Kazutoshi Takahashi and Shinya Yamanaka reprogrammed mice fibroblast cells, which can produce only other fibroblast cells, to become pluripotent stem cells, which have the capacity to produce many different types of cells. Takahashi and Yamanaka also experimented with human cell cultures in 2007. Each worked at Kyoto University in Kyoto, Japan. They called the pluripotent stem cells that they produced induced pluripotent stem cells (iPSCs) because they had induced the adult cells, called differentiated cells, to become pluripotent stem cells through genetic manipulation. Yamanaka received the Nobel Prize in Physiology or Medicine in 2012, along with John Gurdon, as their work showed scientists how to reprogram mature cells to become pluripotent. Takahashi and Yamanaka's 2006 and 2007 experiments showed that scientists can prompt adult body cells to dedifferentiate, or lose specialized characteristics, and behave similarly to embryonic stem cells (ESCs).
In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development. The authors describe the strengths and weaknesses of each type of stem cell for regenerative medicine applications. They state that both MSC and iPS types of stem cells have the potential to regenerate tissues among many other therapeutic possibilities. In their article, Zomer and colleagues review the potential for MSCs and iPS cells to reshape the field of regenerative and personal medicine.
In 1964, authors James Till, Ernest McCulloch, and Louis Siminovitch, published A Stochastic Model of Stem Cell Proliferation, Based on The Growth of Spleen Colony-Forming Cells, which discussed possible mechanisms that control stem cell division. The authors wrote the article following their experiments with spleens of irradiated mice to demonstrate the existence of stem cells, had unknown properties. In their previous experiments, Till and McCulloch noticed that many similar-looking colonies of cells formed on the spleens of irradiated mice, but those colonies had a highly variable number of stem cells. They could not explain why some stem cells gave rise to many stem cells while others only gave rise to a few. In the article, the authors propose an explanation for how stem cells divide and renew, and provide both a greater understanding as to how cancerous tissues may arise due to unchecked stem cell division as well how stem cells can aid in cancer therapy.