All cells that have a nucleus, including plant, animal, fungal cells, and most single-celled protists, also have mitochondria. Mitochondria are particles called organelles found outside the nucleus in a cell's cytoplasm. The main function of mitochondria is to supply energy to the cell, and therefore to the organism. The theory for how mitochondria evolved, proposed by Lynn Margulis in the twentieth century, is that they were once free-living organisms. Around two billion years ago, mitochondria took up residence inside larger cells, in a process called endosymbiosis, becoming functional parts of those cells. Within each mitochondrion is the mitochondrial DNA (mtDNA), which is different from the DNA in the cell's nucleus (nDNA). Organisms inherit their mitochondria only from their mothers via egg cells (oocytes). Mitochondria contribute to the development of oocytes, the release of the oocyte from the ovary (ovulation), the union of oocyte and sperm (fertilization), all stages of embryo formation (embryogenesis), and growth of the embryo after fertilization.
Thalidomide is a sedative drug introduced to European markets on 1 October 1957 after extensive testing on rodent embryos to ensure its safety. Early laboratory tests in rodent populations showed that pregnant rodents could safely use it, so doctors prescribed Thalidomide to treat morning sickness in pregnant women. However, in humans Thalidomide interfered with embryonic and fetal development in ways not observed in rodent tests. Pregnant women who take Thalidomide are at grater than normal risk for spontaneous abortion and for giving birth to children with developmental anomalies such as shortened, absent, or extra limbs, as well as a variety of heart, ear, and internal organ defects. The failure of rodent models to inform scientists of Thalidomide's teratogenicity in humans ignited debate about the proper use of cross-species testing during drug development.
Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E. Sulston received the Nobel Prize in Physiology or Medicine in 2002 for their work on the genetic regulation of organ development and programmed cell death. Research on cell lineages before and after embryonic development may lead to new ways to reduce or promote cell death, which can be important in preventing diseases such as Alzheimer's or cancer.
In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their hatch timing had been documented, the specific cues that induce early hatching were not well understood. Warkentin's study demonstrated that, based on vibration signals alone, treefrog embryos can determine whether they are under attack from a predator and respond accordingly.
Dictyostelium discoideum is a cellular slime mold that serves as an important model organism in a variety of fields. Cellular slime molds have an unusual life cycle. They exist as separate amoebae, but after consuming all the bacteria in their area they proceed to stream together to form a multicellular organism. These features make it a valuable tool for studying developmental processes and also for investigating the evolution of multicellularity. Long thought to be a type of fungus, it has recently been shown that slime molds in fact bear no relation to fungi. Rather they form the monophyletic Mycetozoa, which consists of three distinct groups: plasmodial slime molds; cellular slime molds; and the Protostelia, all of which are structurally similar and consist of a fruiting body supported by a stalk. The cellular slime molds are characterized by a life cycle that includes periods of both multicellularity and unicellularity.
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research.
A 3-D fate map of the chicken (Gallus gallus) embryo with the prospective point of ingression and yolk. The area where the primitive streak will form during gastrulation is shown. The anterior- posterior axis is shown by labeling the anterior and posterio ends (A) and (P). Different colors indicate prospective fates of different regions of the epiblast after gastrulation.
The crystal jellyfish, Aequorea victoria, produces and emits light, called bioluminescence. Its DNA codes for sequence of 238 amino acids that forms a protein called Green Fluorescent Protein (GFP). FP is folded so that a part of the protein, called the chromophore, is located in the center of the protein. The chemical structure of the chromophore emits a green fluorescence when exposed to light in the range of blue to ultraviolet.
This image shows a chicken (Gallus gallus) embryo undergoing gastrulation in stage four (18-19 hrs after laying) according to the Hamburger-Hamilton staging series. At this point in time the chicken embryo is a blastoderm (shown in blue). The first magnification of the embryo shows that the blastoderm cell layers have thickened to form the primitive streak and Hensen's node. The primitive streak extends from the posterior (P) region to the anterior (A) region. The second rectangular magnification shows the blastoderm cross-sectioned through the primitive streak.