In the nineteenth century, reticular theory aimed to describe the properties of neurons, the specialized cells which make up the nervous system, but was later disconfirmed by evidence. Reticular theory stated that the nervous system was composed of a continuous network of specialized cells without gaps (synapses), and was first proposed by researcher Joseph von Gerlach in Germany in 1871. Reticular theory played a significant role in developmental neurobiology as it enabled scientists to theorize how the form of neural cells functioned in the context of the broader nervous system, and although disproven, reticular theory contributed to the foundation of the neuron doctrine that informed the modern field of neurobiology.
Telomeres are structures at the ends of DNA strands that get longer in the DNA of sperm cells as males age. That phenomenon is different for most other types of cells, for which telomeres get shorter as organisms age. In 1992, scientists showed that telomere length (TL) in sperm increases with age in contrast to most cell of most other types. Telomeres are the protective caps at the end of DNA strands that preserve chromosomal integrity and contribute to DNA length and stability. In most cells, telomeres shorten with each cell division due to incomplete replication, though the enzyme telomerase functions in some cell lines that undergo repetitive divisions to replenish any lost length and to prevent degradation. Cells, and therefore organisms, with short telomeres are more susceptible to mutations and genetic diseases. While TL increases in a subset of sperm cells and longer telomeres may prevent early disintegration of DNA, it may also prevent natural mechanisms of apoptosis, or cell death, from occurring in abnormal sperm.
In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at Johns Hopkins University in Baltimore, Maryland. In response to James Watson and Francis Crick’s proposed structure of DNA in 1953, scientists debated how DNA replicated. Throughout the debate, scientists hypothesized different theories about how DNA replicated, but none of the theories had sound experimental data. Stent introduced DNA replication classes that, if present in DNA, would yield distinct experimental results. Conservative, semi-conservative, and dispersive DNA replication categories shaped scientists' research into how DNA replicated, which led to the conclusion that DNA replicated semi-conservatively.
In “Testing the Kin Selection Theory: Who Controls the Investments?” Bert Hölldobler and Edward Osborne Wilson discussed the predictive power of kin selection theory, a theory about the evolution of social behaviors. As part of Hölldobler's and Wilson's 1990 book titled The Ants, Hölldobler and Wilson compared predictions about the reproductive practices of ants to data about the reproductive practices of ants. They showed that the data generally supported the expected behaviors proposed by kin selection theory. Later in their careers, both Hölldobler and Wilson argued that kin selection theory provided an insufficient explanation for the evolution of social behavior. Hölldobler and Wilsons' efforts were emblematic of a larger trend among ant researchers and sociobiologists to explain the evolution of social behavior by focusing on the reproductive dynamics of social organisms.
The Human Papillomavirus (HPV) strains 16 and 18 are the two most common HPV strains that lead to cases of genital cancer. HPV is the most commonly sexually transmitted disease, resulting in more than fourteen million cases per year in the United States alone. When left untreated, HPV leads to high risks of cervical, vaginal, vulvar, anal, and penile cancers. In 1983 and 1984 in Germany, physician Harald zur Hausen found that two HPV strains, HPV-16 and HPV-18, caused cervical cancer in women. In the early twenty first century, pharmaceutical companies Merck & Co. and GlaxoSmithKline created HPV vaccines protecting against HPV-16 and HPV-18, which have reduced the number of HPV infections by fifty-six percent in the US. Discovering HPV strains 16 and 18 allowed physicians to test for those cancer-causing cell populations using Pap smears, a diagnostic tool that collects cells from the woman's cervix to identify cancerous cases of HPV infection. By identifying the cancerous strains of HPV-16 and HPV-18 and utilizing preventative measures such as the Pap smear and HPV vaccines, the rates of cervical cancer and other HPV-related cancers have reduced.
In the mid-1960s, psychologist John Money encouraged the gender reassignment of David Reimer, who was born a biological male but suffered irreparable damage to his penis as an infant. Born in 1965 as Bruce Reimer, his penis was irreparably damaged during infancy due to a failed circumcision. After encouragement from Money, Reimer’s parents decided to raise Reimer as a girl. Reimer underwent surgery as an infant to construct rudimentary female genitals, and was given female hormones during puberty. During childhood, Reimer was never told he was biologically male and regularly visited Money, who tracked the progress of his gender reassignment. Reimer unknowingly acted as an experimental subject in Money’s controversial investigation, which he called the John/Joan case. The case provided results that were used to justify thousands of sex reassignment surgeries for cases of children with reproductive abnormalities. Despite his upbringing, Reimer rejected the female identity as a young teenager and began living as a male. He suffered severe depression throughout his life, which culminated in his suicide at thirty-eight years old. Reimer, and his public statements about the trauma of his transition, brought attention to gender identity and called into question the sex reassignment of infants and children.
In the spring of 1841, abortionist Ann Lohman, called Madame Restell, was convicted for crimes against one of her abortion clients, Maria Purdy. In a deathbed confession, Purdy admitted that she had received an abortion provided by Madame Restell, and she further claimed that the tuberculosis that she was dying from was a result of her abortion. Restell was charged with administering an illegal abortion in New York and her legal battles were heavily documented in the news. Madame Restell’s arrest was one of many highly publicized altercations with the law she experienced during her forty years as a professional abortion provider. Her trial was one of the first abortion trials in American history. Although the charges against Restell were later dropped due to many minor legal complications, her trial brought attention to the legal controversies surrounding abortion as well as the high likelihood of legal action and convictions of abortion crimes in New York during the 1800s.
Between 1953 and 1957, before the Meselson-Stahl experiment verified semi-conservative replication of DNA, scientists debated how DNA replicated. In 1953, James Watson and Francis Crick proposed that DNA was composed of two helical strands that wound together in a coil. Their model suggested a replication mechanism, later termed semi-conservative replication, in which parental DNA strands separated and served as templates for the replication of new daughter strands. Many scientists, beginning with Max Delbrück, questioned Watson and Cricks’ model and suggested new theories for DNA replication. By 1957, three theories about DNA replication prevailed: semi-conservative, conservative, and dispersive replication. Then, Matthew Meselson and Franklin Stahl conducted the Meselson-Stahl experiment, which returned results that supported the semi-conservative theory of DNA replication. The collaboration among scientists that ultimately produced concrete evidence of the DNA replication mechanism furthered both theoretical and physical explanations of genetics and molecular biology, providing insight into how life develops, reproduces, and evolves.
Twilight Sleep (Dammerschlaf) was a form of childbirth first used in the early twentieth century in Germany in which drugs caused women in labor to enter a state of sleep prior to giving birth and awake from childbirth with no recollection of the procedure. Prior to the early twentieth century, childbirth was performed at home and women did not have anesthetics to alleviate the pain of childbirth. In 1906, obstetricians Bernhardt Kronig and Karl Gauss developed the twilight sleep method in 1906 to relieve the pain of childbirth using a combination of the drugs scopolamine and morphine. Twilight sleep contributed to changing childbirth from an at home process to a hospital procedure and increased the use of anesthetics in obstetrics.
Richard Woltereck first described the concept of Reaktionsnorm (norm of reaction) in his 1909 paper 'Weitere experimentelle Untersuchungen uber Art-veranderung, speziell uber das Wesen quantitativer Artunterschiede bei Daphniden' ('Further investigations of type variation, specifically concerning the nature of quantitative differences between varieties of Daphnia'). This concept refers to the ways in which the environment can alter the development of an organism, and its adult characteristics. Woltereck conceived of the Reaktionsnorm as the full range of potentialities latent in a single genotype, evocable by the environmental circumstances of a developing organism. Biologists used variants of Woltereck's concept of Reaktionsnorm, often called the reaction norm or norm of reaction, throughout the twentieth century in attempts to explain how developmental responses to the environment can evolve, and even alter the tempo and direction of evolutionary change.