Search

Displaying 1 - 8 of 8 items.

"Behavioral Thermoregulation by Turtle Embryos" (2011), by Wei-Guo Du, Bo Zhao, Ye Chen, and Richard Shine

In "Behavioral Thermoregulation by Turtle Embryos," published in Proceedings of the National Academy of Sciences in April, 2011, Wei-Guo Du, Bo Zhao, Ye Chen, and Richard Shine report that turtle embryos can move towards warmer temperatures within the egg when presented with a small, 0.8 degrees Celsius gradient. This behavioral thermoregulation may benefit the embryo's fitness by accelerating the rate of development enough to decrease the incubation period by up to four and a half days. Embryos are generally thought to have little control over their surroundings.

Format: Articles

Subject: Publications

The Carapacial Ridge of Turtles

Two main elements characterize the skeletal morphology of turtles: the carapace and the plastron. For a turtle, the carapacial ridge begins in the embryo as a bulge posterior to the limbs but on both sides of the body. Such outgrowths are the first indication of shell development in turtle embryos. While the exact mechanisms underpinning the formation of the carapacial ridge are still not entirely known, some biologists argue that understanding these embryonic mechanisms is pivotal to explaining both the development of turtles and their evolutionary history.

Format: Articles

Subject: Processes

"The Development of the Turtle Carapace" (1989), by Ann Campbell Burke

Ann Campbell Burke examines the development and evolution of vertebrates, in particular, turtles. Her Harvard University experiments, described in Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan, were published in 1989. Burke used molecular techniques to investigate the developmental mechanisms responsible for the formation of the turtle shell.

Format: Articles

Subject: Experiments, Publications

Mechanistic Realization of the Turtle Shell

Turtle morphology is unlike that of any other vertebrate. The uniqueness of the turtle's bodyplan is attributed to the manner in which the turtle's ribs are ensnared within its hard upper shell. The exact embryological and genetic mechanisms underpinning this peculiar anatomical structure are still a matter of debate, but biologists agree that the evolution of the turtle shell lies in the embryonic development of the turtle.

Format: Articles

Subject: Processes

Temperature-Dependent Sex Determination in Reptiles

The sex of a reptile embryo partly results from the production of sex hormones during development, and one process to produce those hormones depends on the temperature of the embryo's environment. The production of sex hormones can result solely from genetics or from genetics in combination with the influence of environmental factors. In genotypic sex determination, also called genetic or chromosomal sex determination, an organism's genes determine which hormones are produced.

Format: Articles

Subject: Experiments

"Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans" (1993), by Theo Colborn, Frederick S. vom Saal, and Ana M. Soto

Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans, was published in 1993 in Environmental Health Perspectives. In the article, the authors present an account of two decades' worth of scientific research that describes the effects of certain pollutants on the health of wildlife, domestic animals, and humans, particularly when exposure takes place during embryonic growth. The term endocrine disruptor was coined in the article to describe the chemical pollutants that target the development and function of the endocrine system.

Format: Articles

Subject: Publications

Charles Darwin's Theory of Pangenesis

In 1868 in England, Charles Darwin proposed his pangenesis theory to describe the units of inheritance between parents and offspring and the processes by which those units control development in offspring. Darwin coined the concept of gemmules, which he said referred to hypothesized minute particles of inheritance thrown off by all cells of the body. The theory suggested that an organism's environment could modify the gemmules in any parts of the body, and that these modified gemmules would congregate in the reproductive organs of parents to be passed on to their offspring.

Format: Articles

Subject: Theories

Ectoderm

Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.

Format: Articles

Subject: Processes