Search
The Role of the Notch signaling pathway in Somitogenesis
Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.
Format: Articles
The Role of the Notch Signaling Pathway in Myogenesis
Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.
Format: Articles
Somites: Formation and Role in Developing the Body Plan
Somites are blocks of mesoderm that are located on either side of the neural tube in the developing vertebrate embryo. Somites are precursor populations of cells that give rise to important structures associated with the vertebrate body plan and will eventually differentiate into dermis, skeletal muscle, cartilage, tendons, and vertebrae. Somites also determine the migratory paths of neural crest cells and of the axons of spinal nerves.
Format: Articles
Subject: Processes
Congenital Vertebral Defects
The spinal column is the central structure in the vertebrate body from which stability, movement, and posture all derive. The vertebrae of the spine are organized into four regions (listed in order from cranial to caudal): cervical, thoracic, lumbar, and pelvic. These regions are classified by their differences in curvature. The human spine usually consists of thirty-three vertebrae, seven of which are cervical (C1-C7), twelve are thoracic (T1-T12), five are lumbar (L1-L5), and nine are pelvic (five fused as the sacrum and four fused as the coccyx).
Format: Articles
Subject: Disorders, Reproduction
Nicole Le Douarin and Charles Ordahl's Experiments on the Developmental Lineages of Somites
Through various studies developmental biologists have been able to determine that the muscles of the back, ribs, and limbs derive from somites. Somites are blocks of cells that contain distinct sections that diverge into specific types (axial or limb) of musculature and are an essential part of early vertebrate development. For many years the musculature of vertebrates was known to derive from the somites, but the exact developmental lineage of axial and limb muscle progenitor cells remained a mystery until Nicole Le Douarin and Charles P.
Format: Articles
Subject: Experiments
The Notch Signaling Pathway in Embryogenesis
The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.
Format: Articles
Subject: Processes
Christiane Nusslein-Volhard (1942- )
Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B.
Format: Articles
Subject: People
"A Genomic Regulatory Network for Development" (2002), by Eric H. Davidson, et al.
In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before.
Format: Articles
Subject: Publications