Search

Displaying 1 - 25 of 28 items.

Pages

Some of the Cells that Arise from Animal Gastrulas with Three Germ Layers

From a developing embryos three primary germ layers, ectoderm (green), mesoderm (pink) and endoderm (yellow), a variety of differentiated cell types and organ systems arise, far more than are shown here. The three primary germ layers are shown during the gastrula stage because they become distinct at the gastrula stage. The germ cells (blue) are pre- cursors to sperm and egg cells, and they are set aside early in development, and are thought to arise from the ectoderm.

Format: Graphics

Subject: Theories, Processes

Gastrulation in Gallus gallus (Domestic Chicken)

Gastrulation is an early stage in embryo development in which the blastula reorganizes into three germ layers: the ectoderm, the mesoderm, and the endoderm. Gastrulation occurs after cleavage but before neurulation and organogenesis. Ernst Haeckel coined the term; gaster, meaning stomach in Latin, is the root for gastrulation, as the gut is one of the most unique creations of the gastrula.

Format: Articles

Subject: Processes

Gastrulation in Xenopus

The process of gastrulation allows for the formation of the germ layers in metazoan embryos, and is generally achieved through a series of complex and coordinated cellular movements. The process of gastrulation can be either diploblastic or triploblastic. In diploblastic organisms like cnidaria or ctenophora, only the endoderm and the ectoderm form; in triploblastic organisms (most other complex metazoans), triploblastic gastrulation produces all three germ layers.

Format: Articles

Subject: Processes

Hensen's Node

A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.

Format: Articles

Subject: Processes

Gastrulation in Mus musculus (common house mouse)

As mice embryos develop, they undergo a stage of development called gastrulation. The hallmark of vertebrate gastrulation is the reorganization of the inner cell mass (ICM) into the three germ layers: ectoderm, mesoderm, and endoderm. Mammalian embryogenesis occurs within organisms; therefore, gastrulation was originally described in species with easily observable embryos. For example, the African clawed frog (Xenopus laevis) is the most widely used organism to study gastrulation because the large embryos develop inside a translucent membrane.

Format: Articles

Subject: Processes, Experiments

"Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs" (1952), by Robert Briggs and Thomas J. King

In 1952 Robert Briggs and Thomas J. King published their article, "Transplantation of Living Nuclei from Blastula Cells into Enucleated Frogs' Eggs," in the Proceedings of the National Academy of Sciences, the culmination of a series of experiments conducted at the Institute for Cancer Research and Lankenau Hospital Research Institute in Philadelphia, Pennsylvania. In this paper Briggs and King examined whether nuclei of embryonic cells are differentiated, and by doing so, were the first to conduct a successful nuclear transplantation with amphibian embryos.

Format: Articles

Subject: Experiments

"On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species" (1924), Hilde Mangold's Dissertation

Hilde Proscholdt Mangold was a doctoral student at the Zoological Institute at the University of Freiburg in Freiburg, Germany, from 1920-1923. Mangold conducted research for her dissertation 'On the Induction of Embryonic Primordia by Implantation of Organizers from Different Species' ('Ueber Induktion von Embryonanlagen durch Implantation artfremder Organisatoren'), under the guidance of Hans Spemann, a professor of zoology at the University of Freiburg.

Format: Articles

Subject: Experiments, Publications

Ernst Heinrich Philipp August Haeckel (1834-1919)

Ernst Heinrich Philipp August Haeckel was a prominent comparative anatomist and active lecturer in the late nineteenth and early twentieth centuries. He is most well known for his descriptions of phylogenetic trees, studies of radiolarians, and illustrations of vertebrate embryos to support his biogenetic law and Darwin's work with evolution. Haeckel aggressively argued that the development of an embryo repeats or recapitulates the progressive stages of lower life forms and that by studying embryonic development one could thus study the evolutionary history of life on earth.

Format: Articles

Subject: People

Spemann-Mangold Organizer

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development.

Format: Articles

Subject: Processes

"Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs" (1975), by John Gurdon, Ronald Laskey, and O. Raymond Reeves

In 1975 John Gurdon, Ronald Laskey, and O. Raymond Reeves published "Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs," in the Journal of Embryology and Experimental Morphology. Their article was the capstone of a series of experiments performed by Gurdon during his time at Oxford and Cambridge, using the frog species Xenopus laevis. Gurdon's first experiment in 1958 showed that the nuclei of Xenopus cells maintained their ability to direct normal development when transplanted.

Format: Articles

Subject: Experiments, Publications

Process of Eukaryotic Embryonic Development

All sexually reproducing, multicellular diploid eukaryotes begin life as embryos. Understanding the stages of embryonic development is vital to explaining how eukaryotes form and how they are related on the tree of life. This understanding can also help answer questions related to morphology, ethics, medicine, and other pertinent fields of study. In particular, the field of comparative embryology is concerned with documenting the stages of ontogeny.

Format: Articles

Subject: Processes

Hilde Mangold (1898-1924)

Hilde Mangold, previously Hilde Proescholdt, was a German embryologist and physiologist who became well known for research completed with Hans Spemann in the 1920s. As a graduate student, Mangold assisted Spemann and together they discovered and coined the term the "organizer." The organizer discovery was a crucial contribution to embryology that led to further understanding of the pattern of embryo differentiation of amphibians.

Format: Articles

Subject: People

John Bertrand Gurdon (1933- )

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell.

Format: Articles

Subject: People

Johannes Holtfreter (1901-1992)

Johannes Holtfreter made important discoveries about the properties of the organizer discovered by Hans Spemann. Although he spent much time away from the lab over many years, he was a productive researcher. His colleagues noted that the time he spent away helped revitalize his ideas. He is credited with the development of a balanced salt medium to allow embryos to develop; the discovery that dead organizer tissue retains inductive abilities; and the development of specification, competence, and distribution of fate maps in the developing frog embryo.

Format: Articles

Subject: People

"Further Experiments on Artificial Parthenogenesis and the Nature of the Process of Fertilization" (1900), by Jacques Loeb

Jacques Loeb broadened and corrected his earlier claims concerning artificial parthenogenesis in sea urchins in a series of experiments in 1900. He published these findings, "Further Experiments on Artificial Parthenogenesis and the Nature of The Process of Fertilization," in a 1900 issue of The American Journal of Physiology.

Format: Articles

Subject: Experiments

"Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization" (1901), by Jacques Loeb

Jacques Loeb showed that scientists could achieve artificial parthenogenesis with some types of annelid worm eggs through a series of experiments in 1900. Loeb published the results of his experiments in 1901 as "Experiments on Artificial Parthenogenesis in Annelids (Chaetopterus) and the Nature of the Process of Fertilization," in The American Journal of Physiology. Loeb 's results broadened the range of animals to which artificial parthenogenesis applied beyond sea urchins.

Format: Articles

Subject: Experiments

August Antonius Rauber (1841-1917)

August Antonius Rauber was an embryologist and anatomist who examined gastrulation in avian embryos. He examined the formation of the blastopore, epiblast, and primitive streak during chick development. Subsequent researchers have further studied Rauber's findings, which has led to new discoveries in embryology and developmental biology.

Format: Articles

Subject: People

Julia Barlow Platt's Embryological Observations on Salamanders' Cartilage (1893)

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells.

Format: Articles

Subject: Experiments, Theories, Processes

Hans Spemann (1869-1941)

Hans Spemann was an experimental embryologist best known for his transplantation studies and as the originator of the "organizer" concept. One of his earliest experiments involved constricting the blastomeres of a fertilized salamander egg with a noose of fine baby hair, resulting in a partially double embryo with two heads and one tail.

Format: Articles

Subject: People

The Organism as a Whole: From a Physicochemical Viewpoint (1916), by Jacques Loeb

Jacques Loeb published The Organism as a Whole: From a Physicochemical Viewpoint in 1916. Loeb's goal for the book was to refute the claim that physics and chemistry were powerless to completely explain whole organisms and their seemingly goal-oriented component processes. Loeb used his new account of science and scientific explanation, marshaling evidence from his embryological researches, to show that physicochemical biology completely and correctly explained whole organisms and their component processes.

Format: Articles

Subject: Publications

John Philip Trinkaus (1918-2003)

John Philip Trinkaus studied the processes of cell migration and gastrulation, especially in teleost fish, in the US during the twentieth century. Called Trink by his friends, his social confidence and work ethic combined to make him a prolific and decorated developmental biologist. His scientific contributions included investigations of several different aspects of embryology.

Format: Articles

Subject: People

"On the Nature of the Process of Fertilization and the Artificial Production of Normal Larvae (Plutei) From the Unfertilized Eggs of the Sea Urchin" (1899), by Jacques Loeb

Jacques Loeb developed procedures to make embryos from unfertilized sea urchin eggs in 1899. Loeb called the procedures "artificial parthenogenesis," and he introduced them and his results in "On the Nature of the Process of Fertilization and the Artificial Production of Norma Larvae (Plutei) from the Unfertilized Eggs of the Sea Urchin" in an 1899 issue of The American Journal of Physiology. In 1900 Loeb elaborated on his experiments.

Format: Articles

Subject: Experiments

Karl Oskar Illmensee (1939–)

Karl Oskar Illmensee studied the cloning and reproduction of fruit flies, mice, and humans in the US and Europe during the twentieth and twenty-first centuries. Illmensee used nuclear transfer techniques (cloning) to create early mouse embryos from adult mouse cells, a technique biologists used in later decades to help explain how embryonic cells function during development. In the early 1980s, Illmensee faced accusations of fraud when others were unable to replicate the results of his experiments with cloned mouse embryos.

Format: Articles

Subject: People, People

Endoderm

Endoderm is one of the germ layers-- aggregates of cells that organize early during embryonic life and from which all organs and tissues develop. All animals, with the exception of sponges, form either two or three germ layers through a process known as gastrulation. During gastrulation, a ball of cells transforms into a two-layered embryo made of an inner layer of endoderm and an outer layer of ectoderm. In more complex organisms, like vertebrates, these two primary germ layers interact to give rise to a third germ layer, called mesoderm.

Format: Articles

Subject: Processes

Neural Crest

Early in the process of development, vertebrate embryos develop a fold on the neural plate where the neural and epidermal ectoderms meet, called the neural crest. The neural crest produces neural crest cells (NCCs), which become multiple different cell types and contribute to tissues and organs as an embryo develops. A few of the organs and tissues include peripheral and enteric (gastrointestinal) neurons and glia, pigment cells, cartilage and bone of the cranium and face, and smooth muscle.

Format: Articles

Subject: Theories

Pages