Search
Filter by Topic
Filter by Format
DNA and X and Y Chromosomes
Y-chromosomes exist in the body cells of many kinds of male animals. Found in the nucleus of most living animal cells, the X and Y-chromosomes are condensed structures made of DNA wrapped around proteins called histones. The individual histones bunch into groups that the coiled DNA wraps around called a nucleosome, which are roughly 10 nano-meters (nm) across. The histones bunch together to form a helical fiber (30 nm) that spins into a supercoil (200 nm). During much of a cell's life, DNA exists in the 200 nm supercoil phase.
Format: Graphics
Sex Determination in Humans
In humans, sex determination is the process that determines the biological sex of an offspring and, as a result, the sexual characteristics that they will develop. Humans typically develop as either male or female, primarily depending on the combination of sex chromosomes that they inherit from their parents. The human sex chromosomes, called X and Y, are structures in human cells made up of tightly bound deoxyribonucleic acid, or DNA, and proteins.
Format: Articles
Apoptosis in Embryonic Development
Apoptosis, or programmed cell death, is a mechanism in embryonic development that occurs naturally in organisms. Apoptosis is a different process from cell necrosis, which is uncontrolled cell death usually after infection or specific trauma. As cells rapidly proliferate during development, some of them undergo apoptosis, which is necessary for many stages in development, including neural development, reduction in egg cells (oocytes) at birth, as well as the shaping of fingers and vestigial organs in humans and other animals. Sydney Brenner, H. Robert Horvitz, and John E.
Format: Articles
Subject: Theories
"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (1972), by John F. R. Kerr, Andrew H. Wyllie and Alastair R. Currie
"Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics" (hereafter abbreviated as "Apoptosis") was published in the British Journal of Cancer in 1972 and co-authored by three pathologists who collaborated at the University of Aberdeen, Scotland. In this paper the authors propose the term apoptosis for regulated cell death that proceeds through active, controlled morphological changes. This is in contrast to necrosis, a passive mode of cell death that results from uncontrolled cellular reactions to injury or stress.
Format: Articles
Subject: Publications
Molecular Epigenetics and Development: Histone Conformations, DNA Methylation and Genomic Imprinting
Introduced by Conrad Hal Waddington in 1942, the concept of epigenetics gave scientists a new paradigm of thought concerning embryonic development, and since then has been widely applied, for instance to inheritable diseases, molecular technologies, and indeed the human genome as a whole. A genome contains an embedded intricate coding template that provides a means of genetic expression from the initial steps of embryonic development until the death of the organism. Within the genome there are two prominent components: coding (exons) and non-coding (introns) sequences.
Format: Articles
Subject: Theories
Wilhelm Roux (1850-1924)
Wilhelm Roux was a nineteenth-century experimental embryologist who was best known for pioneering Entwicklungsmechanik, or developmental mechanics. Roux was born in Jena, Germany, on 9 June 1850, the only son of Clotilde Baumbach and a university fencing master, F. A. Wilhelm Ludwig Roux. Roux described himself as an aloof child, but when he was fourteen he cultivated a passion for science that was encouraged by the director at Oberrealschule in Meiningen.
Format: Articles
Subject: People
Meiosis in Humans
Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success.
Format: Articles
Subject: Processes, Reproduction
Sonja Vernes, et al.'s Experiments On the Gene Networks Affected by the Foxp2 Protein (2011)
In 2011, Sonja Vernes and Simon Fisher performed a series of experiments to determine which developmental processes are controlled by the mouse protein Foxp2. Previous research showed that altering the Foxp2 protein changed how neurons grew, so Vernes and Fisher hypothesized that Foxp2 would affect gene networks that involved in the development of neurons, or nerve cells. Their results confirmed that Foxp2 affected the development of gene networks involved in the growth of neurons, as well as networks that are involved in cell specialization and cell communication.
Format: Articles
Subject: Experiments
Amniocentesis Prior to 1980
The extraembryonic membranes that surround and originate from the embryos of vertebrates such as birds, reptiles, and mammals are crucial to their development. They are integral to increasing the surface area of the uterus, forming the chorion (which in turn produces the placenta) and the amnion, respectively. The amnion will ultimately surround the embryo in a fluid-filled amniotic cavity. This amniotic fluid, which cushions and protects the fetus and helps prevent the onset of labor, is sampled in amniocentesis to screen for genetic diseases.
Format: Articles
Subject: Processes, Reproduction
Andrew Francis Dixon (1868-1936)
Andrew Francis Dixon studied human anatomy and egg cells at the turn of the twentieth century in Ireland and Great Britain. Dixon studied the sensory and motor nervous system of the face, the cancellous bone tissue of the femur, supernumerary kidneys, and the urogenital system. In 1927 Dixon described a mature human ovarian follicle. This follicle, Dixon noted, contained an immature human egg cell (oocyte) with a visible first polar body and the beginnings of the second polar body.
Format: Articles
Subject: People
Craig C. Mello (1960- )
Craig C. Mello is an American developmental biologist and Nobel Laureate, who helped discover RNA interference (RNAi). Along with his colleague Andrew Fire, he developed gene knockouts using RNAi. In 006 Mello won the Nobel Prize in Physiology or Medicine for his contribution. Mello also contributed to developmental biology, focusing on gene regulation, cell signaling, cleavage formation, germline determination, cell migration, cell fate differentiation, and morphogenesis.
Format: Articles
Subject: People
"Sheep Cloned by Nuclear Transfer from a Cultured Cell Line" (1996), by Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut
In 1995 and 1996, researchers at the Roslin Institute in Edinburgh, Scotland, cloned mammals for the first time. Keith Campbell, Jim McWhir, William Ritchie, and Ian Wilmut cloned two sheep, Megan and Morag, using sheep embryo cells. The experiments indicated how to reprogram nuclei from differentiated cells to produce live offspring, and that a single population of differentiated cells could produce multiple offspring. They reported their results in the article 'Sheep Cloned by Nuclear Transfer from a Cultured Cell Line' in March 1996.
Format: Articles
Subject: Experiments
"Male Development of Chromosomally Female Mice Transgenic for Sry gene" (1991), by Peter Koopman, et al.
Early 1990s research conducted by Peter Koopman, John Gubbay, Nigel Vivian, Peter Goodfellow, and Robin Lovell-Badge, showed that chromosomally female (XX) mice embryos can develop as male with the addition of a genetic fragment from the Y chromosome of male mice. The genetic fragment contained a segment of the mouse Sry gene, which is analogous to the human SRY gene. The researchers sought to identify Sry gene as the gene that produced the testis determining factor protein (Tdf protein in mice or TDF protein in humans), which initiates the formation of testis.
Format: Articles
Subject: Experiments
"Human Toxoplasmosis: Occurrence in Infants as an Encephalomyelitis Verification of Transmission to Animals" (1939), by Abner Wolf et al.
In a series of experiments during mid 1930s, a team of researchers in New York helped establish that bacteria of the species Toxoplasma gondii can infect humans, and in infants can cause toxoplasmosis, a disease that inflames brains, lungs, and hearts, and that can organisms that have it. The team included Abner Wolf, David Cowen, and Beryl Paige. They published the results of their experiment in Human Toxoplasmosis: Occurrence in Infants as an Encephalomyelitis Verification of Transmission to Animals.
Format: Articles
Subject: Experiments, Reproduction, Disorders
"The Development of the Pronephros during the Embryonic and Early Larval Life of the Catfish (Ictalurus punctatus)" (1932), by Rachel L. Carson
Rachel L. Carson studied biology at Johns Hopkins University in Maryland and graduated in 1933 with an MA upon the completion of her thesis, The Development of the Pronephros during the Embryonic and Early Larval Life of the Catfish (Ictalurus punctatus). The research that Carson conducted for this thesis project grounded many of the claims and observations she presented in her 1962 book, Silent Spring.
Format: Articles
Subject: People, Experiments, Publications
The Y-Chromosome in Animals
The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages.
Format: Articles
Subject: Reproduction, Theories