Search

Displaying 1 - 25 of 60 items.

Pages

Regeneration

Regeneration is a fascinating phenomenon. The fact that many organisms have the capacity to regenerate lost parts and even remake complete copies of themselves is difficult to fathom; so difficult, in fact, that for a very long time people were reluctant to believe regeneration actually took place. It seemed unbelievable that some organisms could re-grow lost limbs, organs, and other body parts. If only we could do the same!

Format: Articles

Subject: Processes

Thomas Hunt Morgan's Definition of Regeneration: Morphallaxis and Epimorphosis

For Thomas Hunt Morgan clarity was of utmost importance. He was therefore frustrated with the many disparate, disconnected terms that were used to refer to similar, if not the same, regenerative processes within organisms. When Morgan wrote Regeneration in 1901 there had been many different terms developed and adopted by various investigators to describe their observations. As a result there were many inconsistencies making it difficult to discuss results comparatively and also making it more challenging to generalize. Defining terms was a priority for Morgan.

Format: Articles

Subject: Theories

"β-Catenin Defines Head Versus Tail Identity During Planarian Regeneration and Homeostasis" (2007), by Kyle A. Gurley, Jochen C. Rink, and Alejandro Sánchez Alvarado

Alejandro Sánchez Alvarado's laboratory group has employed molecular tools to investigate old questions about regeneration and as a result have identified some of the molecular mechanisms determining polarity. Recent work by his group has shown Wnt-β-catenin signaling determines whether a tail or a head will form during regeneration in planarians. This study was motivated by work Thomas Hunt Morgan conducted in the late nineteenth century.

Format: Articles

Subject: Experiments

Lazzaro Spallanzani (1729-1799)

Lazzaro Spallanzani's imaginative application of experimental methods, mastery of microscopy, and wide interests led him to significant contributions in natural history, experimental biology, and physiology. His detailed and thoughtful observations illuminated a broad spectrum of problems ranging from regeneration to the genesis of thunderclouds.

Format: Articles

Subject: People

Alejandro Sánchez Alvarado (1964- )

Alejandro Sánchez Alvarado is a Professor of Neurobiology and Anatomy at the University of Utah School of Medicine and is also a Howard Hughes Medical Institute Investigator. Born in Caracas, Venezuela, 24 February 1964, Sánchez Alvarado left his home to pursue education in the United States, where he received a Bachelor of Science in molecular biology and chemistry from Vanderbilt University in 1986 and a Doctorate in pharmacology and cell biophysics at the University of Cincinnati College of Medicine in 1992.

Format: Articles

Subject: People

Abraham Trembley (1710-1784)

Abraham Trembley's discovery of the remarkable regenerative capacity of the hydra caused many to question their beliefs about the generation of organisms. Born 3 September 1710 to a prominent Geneva family, Trembley studied at the Calvin Institute, now the University of Geneva, where he completed his thesis on calculus. He went on to become tutor for Count William Bentinck's two sons, and it was while teaching the boys natural history that Trembley came across a strange organism in a sample of pond water.

Format: Articles

Subject: People

"A molecular wound response program associated with regeneration initiation in planarians" (2012), by Danielle Wenemoser et al.

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration.

Format: Articles

Subject: Experiments

The Gradient Theory

The gradient theory is recognized as Charles Manning Child's most significant scientific contribution. Gradients brought together Child's interest in development and his fascination with the origins of individuality and organization. The gradient theory grew from his studies of regeneration, which were largely based on work he conducted with marine invertebrates, such as the ascidian flat worm, planaria and the hydroid, tubularia.

Format: Articles

Subject: Theories

Digit Regeneration Is Regulated by Msx1 and BMP4 in Fetal Mice (2003), by Manjong Han et al.

In the early 2000s, Manjong Han, Xiaodang Yang, Jennifer Farrington, and Ken Muneoka investigated how genes and proteins in fetal mice (Mus musculus) influenced those fetal mice to regenerate severed toes at Tulane University in New Orleans, Louisiana. The group used hind limbs from mice to show how the gene Msx1 (Homeobox 7) functions in regenerating amputated digits.

Format: Articles

Subject: Experiments

Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc. (ACT) is a biotechnology company that uses stem cell technology to develop novel therapies in the field of regenerative medicine. Formed in 1994, ACT grew from a small agricultural cloning research facility located in Worcester, Massachusetts, into a multi-locational corporation involved in using both human embryonic stem cells (hESC) and human adult stem cells as well as animal cells for therapeutic innovations.

Format: Articles

Subject: Organizations, Reproduction

Tissue Engineering

Tissue engineering is a field of regenerative medicine that integrates the knowledge of scientists, physicians, and engineers into the construction or reconstruction of human tissue. Practitioners of tissue engineering seek to repair, replace, maintain, and enhance the abilities of a specific tissue or organ by means of living cells. More often than not stem cells are the form of living cells used in this technology. Tissue engineering is one of the disciplines involved in translating knowledge of developmental biology into the clinical setting.

Format: Articles

Subject: Processes

"Generation of Induced Pluripotent Stem Cells Using Recombinant Proteins" (2009), by Hongyan Zhou et al.

Induced pluripotent stem cells (iPSCs) are studied carefully by scientists not just because they are a potential source of stem cells that circumvents ethical controversy involved with experimentation on human embryos, but also because of their unique potential to advance the field of regenerative medicine. First generated in a lab by Kazutoshi Takahashi and Shinya Yamanaka in 2006, iPSCs have the ability to differentiate into cells of all types.

Format: Articles

Subject: Publications

Michael D. West (1953- )

Michael D. West is a biomedical entrepreneur and investigator whose aim has been to extend human longevity with biomedical interventions. His focus has ranged from the development of telomerase-based therapeutics to the application of human embryonic stem cells in regenerative medicine. Throughout his eventful career, West has pursued novel and sometimes provocative ideas in a fervent, self-publicizing manner. As of 2009, West advocated using human somatic cell nuclear transfer techniques to derive human embryonic stem cells for therapeutic practice.

Format: Articles

Subject: People

Induced Pluripotent Stem Cells

Induced Pluripotent Stem Cells (iPSCs) are cells derived from non-pluripotent cells, such as adult somatic cells, that are genetically manipulated so as to return to an undifferentiated, pluripotent state. Research on iPSCs, initiated by Shinya Yamanaka in 2006 and extended by James Thompson in 2007, has so far revealed the same properties as embryonic stem cells (ESCs), making their discovery potentially very beneficial for scientists and ethicists alike.

Format: Articles

Subject: Technologies

Hematopoietic Stem Cell Transplantation

The purpose of regenerative medicine, especially tissue engineering, is to replace damaged tissue with new tissue that will allow the body to resume normal function. The uniqueness of tissue engineering is that it can restore normal structure in addition to repairing tissue function, and is often accomplished using stem cells. The first type of tissue engineering using stem cells was hematopoietic stem cell transplantation (HSCT), a surgical procedure in which hematopoietic stem cells (HSCs) are infused into a host to treat a variety of blood diseases, cancers, and immunodeficiencies.

Format: Articles

Subject: Technologies

Edward Donnall Thomas (1920-2012)

Edward Donnall Thomas, an American physician and scientist, gained recognition in the scientific community for conducting the first bone marrow transplant, a pioneering form of hematopoietic stem cell transplantation (HSCT). Bone marrow transplants are considered to be the first successful example of tissue engineering, a field within regenerative medicine that uses hematopoietic stem cells (HSCs) as a vehicle for treatment. Prior to Thomas's groundbreaking work, most blood-borne diseases, including certain inherited and autoimmune diseases, were considered lethal.

Format: Articles

Subject: People

Thomas Hunt Morgan (1866-1945)

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Format: Articles

Subject: People

Elizabeth Dexter Hay (1927–2007)

Elizabeth Dexter Hay studied the cellular processes that affect development of embryos in the US during the mid-twentieth and early twenty-first centuries. In 1974, Hay showed that the extracellular matrix, a collection of structural molecules that surround cells, influences cell behavior. Cell growth, cell migration, and gene expression are influenced by the interaction between cells and their extracellular matrix.

Format: Articles

Subject: People

“Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” (2015), by Helena D. Zomer, Antanásio S. Vidane, Natalia G. Gonçalves, and Carlos E. Ambrósio

In 2015, biologist Helena D. Zomer and colleagues published the review article “Mesenchymal and Induced Pluripotent Stem Cells: General Insights and Clinical Perspectives” or “Mesenchymal and Induced Pluripotent Stem Cells” in Stem Cells and Cloning: Advances and Applications. The authors reviewed the biology of three types of pluripotent stem cells, embryonic stem cells, or ESCs, mesenchymal stem cells, or MSCs, and induced pluripotent stem cells, or iPS cells. Pluripotent stem cells are a special cell type that can give rise to other types of cells and are essential for development.

Format: Articles

Subject: Publications

Roger Wolcott Sperry (1913–1994)

Roger Wolcott Sperry studied the function of the nervous system in the US during the twentieth century. He studied split-brain patterns in cats and humans that result from separating the two hemispheres of the brain by cutting the corpus callosum, the bridge between the two hemispheres of the brain. He found that separating the corpus callosum the two hemispheres of the brain could not communicate and they performed functions as if the other hemisphere did not exist. Sperry studied optic nerve regeneration through which he developed the chemoaffinity hypothesis.

Format: Articles

Subject: People

The Role of the Notch signaling pathway in Somitogenesis

Among other functions, the Notch signaling pathway contributes to the development of somites in animals. It involves a cell signaling mechanism with a wide range of functions, including cellular differentiation, and the formation of the embryonic structures (embryogenesis). All multicellular animals use Notch signaling, which is involved in the development, maintenance, and regeneration of a range of tissues. The Notch signaling pathways spans two cells, and consists of receptor proteins, which cross one cell's membrane and interacts with proteins on adjacent cells, called ligands.

Format: Articles

Subject: Theories, Processes

Paul Kammerer's Experiments on Sea-squirts in the Early Twentieth Century

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts and other organisms at a time when Charles Darwin's 1859 theory of evolution lacked evidence to explain how offspring inherited traits from their parents.

Format: Articles

Subject: Experiments, Organisms

Charles Manning Child (1869-1954)

Born in Ypsilanti, Michigan, on 2 February 1869, Charles Manning Child was the only surviving child of Mary Elizabeth and Charles Chauncey Child, a prosperous, old New England family. Growing up in Higganum, Connecticut, Child was interested in biology from an early age. He made extensive collections of plants and minerals on his family farm and went on to study biology at Wesleyan University, commuting from his family home. Child received his PhB in 1890 and MS in biology in 1892, and then went on to study in Leipzig after his parents death.

Format: Articles

Subject: People

The Role of the Notch Signaling Pathway in Myogenesis

Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.

Format: Articles

Subject: Theories, Processes

The Germ-Plasm: a Theory of Heredity (1893), by August Weismann

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the

Format: Articles

Subject: Publications, Theories

Pages