Search
Filter by Topic
Edwin Stephen Goodrich (1868-1946)
Edwin Stephen Goodrich studied the structures of animals in England during the nineteenth and twentieth centuries. Goodrich studied how animals develop to identify their parts and to establish the evolutionary relationships between different species. Goodrich established that body structures can shift their positions relative to an organism's body during evolution, and he hypothesized that body structures can share ancestry (homology) between organisms of different species, even without identical body placement.
Format: Articles
Subject: People
Essay: Homology
Homology is a central concept of comparative and evolutionary biology, referring to the presence of the same bodily parts (e.g., morphological structures) in different species. The existence of homologies is explained by common ancestry, and according to modern definitions of homology, two structures in different species are homologous if they are derived from the same structure in the common ancestor.
Format: Essays and Theses
Subject: Processes
Etienne Geoffroy Saint-Hilaire (1772-1844)
Etienne Geoffroy Saint-Hilaire, commonly known as Geoffroy, studied animals, their anatomy and their embryos, and teratogens at the National Museum of Natural History in Paris, France in the eighteenth and nineteenth centuries. Geoffroy also helped develop several specialized fields in the life sciences, including experimental embryology. In his efforts to experimentally demonstrate the theory of recapitulation, Geoffroy developed techniques to intervene in the growth of embryos to see whether they would develop into different kinds of organisms.
Format: Articles
Subject: People
Nikolai Ivanovic Vavilov (1887-1943)
Nikolai Ivanovich Vavilov proposed theories of plant genetic diversity and participated in the political debate about genetics in Soviet Russia in the early twentieth century. Vavilov collected plant species around the world, building one of the first and most comprehensive seed banks, and he spent much of his life researching plant breeding and genetics. Vavilov also developed a theory of the historical centers of origin of cultivated plants. Vavilov spent most of his scientific career in Russia, although he studied abroad and traveled extensively.
Format: Articles
Subject: People
The Origin of Species: "Chapter Thirteen: Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Organs" (1859), by Charles R. Darwin
Mutual Affinities of Organic Beings: Morphology: Embryology: Rudimentary Organs is the thirteenth chapter of Charles Darwin's book The Origin of Species, first published in England in 1859. The book details part of Darwin's argument for the common ancestry of life and natural selection as the cause of speciation. In this chapter, Darwin summarizes the evidence for evolution by connecting observations of development in organisms to the processes of natural selection.
Format: Articles
Subject: Publications
Thomas Henry Huxley (1825-1895)
In nineteenth century Great Britain, Thomas Henry Huxley proposed connections between the development of organisms and their evolutionary histories, critiqued previously held concepts of homology, and promoted Charles Darwin's theory of evolution. Many called him Darwin's Bulldog. Huxley helped professionalize and redefine British science. He wrote about philosophy, religion, and social issues, and researched and theorized in many biological fields.
Format: Articles
Subject: People
"RNA-Guided Human Genome Engineering via Cas 9" (2013), by Prashant Mali, Luhan Yang, Kevin M. Esvelt, John Aach, Marc Guell, James E. DiCarlo, Julie E. Norville, and George M. Church
In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of organisms, DNA, by targeting specific sequences of DNA and subsequently replacing those targeted sequences with different DNA sequences. Church and his team used RNA-guided Cas 9 technology to edit the genetic information in human cells.
Format: Articles
Subject: Publications
Walter Jakob Gehring (1939-2014)
Walter Jakob Gehring discovered the homeobox, a DNA segment found in a specific cluster of genes that determine the body plan of animals, plants, and fungi. Gehring identified the homeobox in 1983, with the help of colleagues while isolating the Antennapedia (Antp) gene in fruit flies (Drosophila) at the University of Basel in Basel, Switzerland. Hox genes, a family of genes that have the homeobox, determine the head-to-tail (anterior-posterior) body axis of both vertebrates and invertebrates.
Format: Articles
Subject: People
Meiosis in Humans
Meiosis, the process by which sexually-reproducing organisms generate gametes (sex cells), is an essential precondition for the normal formation of the embryo. As sexually reproducing, diploid, multicellular eukaryotes, humans rely on meiosis to serve a number of important functions, including the promotion of genetic diversity and the creation of proper conditions for reproductive success.
Format: Articles
Subject: Processes, Reproduction
Hox Genes and the Evolution of Vertebrate Axial Morphology Experiment (1995)
In 1995, researchers Ann Burke, Craig Nelson, Bruce Morgan, and Cliff Tabin in the US studied the genes that regulate the construction of vertebra in developing chick and mouse embryos, they showed similar patterns of gene regulation across both species, and they concluded that those patterns were inherited from an ancestor common to all vertebrate animals. The group analyzed the head-to-tail (anterior-posterior) axial development of vertebrates, as the anterior-posterior axis showed variation between species over the course of evolutionary time.
Format: Articles
Subject: Experiments
Homeobox Genes and the Homeobox
Homeobox genes are a cluster of regulatory genes that are spatially and temporally expressed during early embryological development. They are interesting from both a developmental and evolutionary perspective since their sequences are highly conserved and shared across an enormously wide array of living taxa.
Format: Articles
Subject: Processes
Essay: The Cuvier-Geoffroy Debate
In 1830, a dispute erupted in the halls of lÕAcad mie des Sciences in Paris between the two most prominent anatomists of the nineteenth century. Georges Cuvier and tienne Geoffroy Saint-Hilaire, once friends and colleagues at the Paris Museum, became arch rivals after this historical episode. Like many important disputes in the history of science, this debate echoes several points of contrasts between the two thinkers.
Format: Essays and Theses
Subject: Theories
Gavin Rylands de Beer (1899-1972)
Gavin de Beer was an English zoologist known for his contributions to evolution and embryology, in particular for showing the inadequacy of the germ layer theory as it was then proposed. He was born in London, England, on 1 November 1899, but was raised for his first thirteen years in France where his father worked for a telegraph company. He entered Magdalen College, Oxford, in 1917 but his studies were soon interrupted by World War I. After serving in the military, he returned to Oxford where he studied under Edwin Goodrich.
Format: Articles
Subject: People
Ectoderm
Ectoderm is one of three germ layers--groups of cells that coalesce early during the embryonic life of all animals except maybe sponges, and from which organs and tissues form. As an embryo develops, a single fertilized cell progresses through multiple rounds of cell division. Eventually, the clump of cells goes through a stage called gastrulation, during which the embryo reorganizes itself into the three germ layers: endoderm, ectoderm, and mesoderm. After gastrulation, the embryo goes through a process called neurulation, which starts the development of nervous system.
Format: Articles
Subject: Processes
The Notch Signaling Pathway in Embryogenesis
The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons.
Format: Articles
Subject: Processes
The Role of the Notch Signaling Pathway in Myogenesis
Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism.
Format: Articles
Hedgehog Signaling Pathway
The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes.
Format: Articles
Subject: Processes
Francis Maitland Balfour (1851-1882)
During the 1870s and early 1880s, the British morphologist Francis Maitland Balfour contributed in important ways to the budding field of evolutionary embryology, especially through his comparative embryological approach to uncovering ancestral relationships between groups. As developmental biologist and historian Brian Hall has observed, the field of evolutionary embryology in the nineteenth century was the historical ancestor of modern-day evolutionary developmental biology.
Format: Articles
Subject: People
Barbara McClintock's Transposon Experiments in Maize (1931–1951)
Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes.
Format: Articles
Subject: Experiments
Andrew Zachary Fire (1959- )
Andrew Zachary Fire is a professor at Stanford University and Nobel Laureate. Fire worked at the Carnegie Institution of Washington's Department of Embryology in Baltimore, Maryland, with colleague Craig Mello, where they discovered that RNA molecules could be used to turn off or knock out the expression of genes. Fire and Mello called the process RNA interference (RNAi), and won the Nobel Prize in Physiology or Medicine in 2006 for their discovery.
Format: Articles
Subject: People
"The Inductive Capacity of Oral Mesenchyme and Its Role in Tooth Development" (1969-1970), by Edward J. Kollar and Grace R. Baird
Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity.
Format: Articles
Subject: Experiments
The Hedgehog Signaling Pathway in Vertebrates
The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.
Format: Articles
Subject: Theories
Mesoderm
Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers.
Format: Articles
Subject: Processes
Hensen's Node
A node, or primitive knot, is an enlarged group of cells located in the anterior portion of the primitive streak in a developing gastrula. The node is the site where gastrulation, the formation of the three germ layers, first begins. The node determines and patterns the anterior-posterior axis of the embryo by directing the development of the chordamesoderm. The chordamesoderm is a specific type of mesoderm that will differentiate into the notochord, somites, and neural tube. Those structures will later form the vertebral column.
Format: Articles
Subject: Processes
Translational Developmental Biology
Translational developmental biology is a growing approach to studying biological phenomena that explicitly aims to develop medical therapies. When discussing the generation of new therapies it is often argued that they will emerge as a "translation" from "fundamental biology." Although translational research is not a new term, "translational developmental biology" has been steadily gaining popularity as discoveries in cell and developmental biology, particularly those involving stem cells, provide a basis for regenerative medicine.
Format: Articles
Subject: Theories