In a series of experiments in the late 1970s, Alec J. Jeffreys in the UK and Richard A. Flavell in the Netherlands developed a technique to detect variations in the DNA of different individuals. They compared fragments of DNA from individuals’ beta-globin genes, which produce a protein in hemoglobin. Previously, to identify biological material, scientists focused on proteins rather than on genes. But evidence about proteins enabled scientists only to exclude, but not to identify, individuals as the sources of the biological samples. By 1979, Jeffrey’s experiments on beta-globin genes shifted the analytical approach of scientific identification from proteins to genes to identify an individual’s genetic identity. The ability to match a person to a biological sample developed in the 1980s and impacted many fields including paternity testing, forensics, immigration, and body identification.
Mary-Claire King studied genetics in the US in the twenty-first century. King identified two genes associated with the occurrence of breast cancer, breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2). King showed that mutated BRCA1 and BRCA2 genes cause two types of reproductive cancer, breast and ovarian cancer. Because of King’s discovery, doctors can screen women for the inheritance of mutated BRCA1 and BRCA2 genes to evaluate their risks for breast and ovarian cancer. King also demonstrated the genetic similarities between chimpanzees and humans and helped to identify victims of human rights abuses using genetics. King's identification of the BRCA genes and their relationship to breast and ovarian cancer, both reproductive cancers, has allowed physicians to screen thousands of women for the genes and for those women to choose to undergo preventative cancer treatment to lower their risk of cancer.
Alec John Jeffreys created a process called DNA fingerprinting in the UK during the twentieth century. For DNA fingerprinting, technicians identify a person as the source of a biological sample by comparing the genetic information contained in the person's DNA to the DNA contained in the sample. Jeffreys developed the technique in the 1980s while at the University of Leicester in Leicester, UK. Jeffreys's technique had immediate applications. In forensic science, DNA fingerprinting enabled police to identify suspects of crimes based on their genetic identities. Previous biologic techniques enabled only the exclusion of possible suspects, not the identification of individuals. Jeffreys's technique also enabled technicians to identify the father of a child in paternity testing.
Oliver Allison Ryder studied chromosomal evolution and endangered species in efforts for wildlife conservation and preservation at the San Diego Zoo in San Diego, California. Throughout his career, Ryder studied breeding patterns of endangered species. He collected and preserved cells, tissues, and DNA from endangered and extinct species to store in the San Diego Frozen Zoo, a center for genetic research and development in San Diego, California. Ryder and his team also sequenced vertebrate genomes under the Genome 10k initiative, a collaborative international program aiming to analyze the complete genomes of over ten thousand species of vertebrate. Ryder’s research has helped preserve species, restore diminished populations of wildlife, and protect biodiversity.