Theophilus Shickel Painter studied the structure and function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at the University of Texas at Austin in Austin, Texas. In the 1920s and 1930s, Painter studied the chromosomes of the salivary gland giant chromosomes of the fruit fly (Drosophila melanogaster), with Hermann J. Muller. Muller and Painter studied the ability of X-rays to cause changes in the chromosomes of fruit flies. Painter also studied chromosomes in mammals. He investigated the development of the male gamete, a process called spermatogenesis, in several invertebrates and vertebrates, including mammals. In addition, Painter studied the role the Y-chromosome plays in the determination and development of the male embryo. Painter's research concluded that egg cells fertilized by sperm cell bearing an X-chromosome resulted in a female embryo, whereas egg cells fertilized by a sperm cell carrying a Y-chromosome resulted in a male embryo. Painter's work with chromosomes helped other researchers determine that X- and Y-chromosomes are responsible for sex determination.
Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and observed the number of mutations in the offspring. In 1927, Muller described the results of his experiments in "Artificial Transmutation of the Gene" and "The Problem of Genic Modification". His discovery indicated the causes of mutation and for that research he later received the Nobel Prize in Physiology or Medicine in 1946. Muller's experiments with x-rays established that x-rays mutated genes and that egg and sperm cells are especially susceptible to such genetic mutations.
Hermann Joseph Muller studied the effects of x-ray radiation on genetic material in the US during the twentieth century. At that time, scientists had yet to determine the dangers that x-rays presented. In 1927, Muller demonstrated that x-rays, a form of high-energy radiation, can mutate the structure of genetic material. Muller warned others of the dangers of radiation, advising radiologists to protect themselves and their patients from radiation. He also opposed the indiscriminate use of radiation in medical and industrial fields. In 1946, he received the Nobel Prize in Physiology or Medicine for his lifetime work involving radiation and genetic mutation. Muller's worked enabled scientists to directly study mutations without having to rely on naturally occurring mutations. Furthermore, Muller showed that radiation, even in small doses, leads to genetic mutations primarily in germ cells, cells which give rise to sperm and egg cells.
This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread.