In 1969, Roy J. Britten and Eric H. Davidson published Gene Regulation for Higher Cells: A Theory, in Science. A Theory proposes a minimal model of gene regulation, in which various types of genes interact to control the differentiation of cells through differential gene expression. Britten worked at the Carnegie Institute of Washington in Washington, D.C., while Davidson worked at the California Institute of Technology in Pasadena, California. Their paper was an early theoretical and mechanistic description of gene regulation in higher organisms.

Simon Edward Fisher studied the genes that control speech and language in England and the Netherlands in the late twentieth and early twenty-first centuries. In 2001, Fisher co-discovered the FOXP2 gene with Cecilia Lai, a gene related to language acquisition in humans and vocalization in other mammals. When damaged, the human version of the gene leads to language disorders that disrupt language and speech skills. Fisher's discovery validated the hypothesis that genes influence language, resulting in further investigations of language disorders and their heritability. Fisher's research enabled scientists to better study how genetics play a role in speech, language, and human behavior.

In 2002 Eric Davidson and his research team published 'A Genomic Regulatory Network for Development' in Science. The authors present the first experimental verification and systemic description of a gene regulatory network. This publication represents the culmination of greater than thirty years of work on gene regulation that began in 1969 with 'A Gene Regulatory Network for Development: A Theory' by Roy Britten and Davidson. The modeling of a large number of interactions in a gene network had not been achieved before. Furthermore, this model revealed behaviors of the gene networks that could only be observed at the levels of biological organization above that of the gene.

Subscribe to Transcription factors