During 1964, David Hubel and Torsten Wiesel studied the short and long term effects of depriving kittens of vision in one eye. In their experiments, Wiesel and Hubel used kittens as models for human children. Hubel and Wiesel researched whether the impairment of vision in one eye could be repaired or not and whether such impairments would impact vision later on in life. The researchers sewed one eye of a kitten shut for varying periods of time. They found that when vision impairments occurred to the kittens right after birth, their vision was significantly affected later on in life, as the cells that were responsible for processing visual information redistributed to favor the unimpaired eye. Hubel and Wiesel worked together for over twenty years and received the 1981 Nobel Prize for Physiology or Medicine for their research on the critical period for mammalian visual system development. Hubel and Wiesel’s experiments with kittens showed that there is a critical period during which the visual system develops in mammals, and it also showed that any impairment of that system during that time will affect the lifelong vision of a mammal.

David Hunter Hubel studied the development of the visual system and how the brain processes visual information in the US during the twentieth century. He performed multiple experiments with kittens in which he sewed kitten’s eyes shut for varying periods of time and monitored their vision after reopening them. Hubel, along with colleague Torsten Wiesel, received the 1981 Nobel Prize in Physiology or Medicine for that research. By using kittens as models for human children and sewn eyes as models for congenital vision disorders, Hubel’s research demonstrated how vision impairments can affect the development of the visual system in humans. Furthermore, Hubel’s research has informed surgeons about the importance of operating on infants with vision impairments during the first months of life to prevent deterioration of the visual cortex of the brain and permanent vision loss.

David Wildt's cheetah (Acinonyx jubatus) research from 1978-1983 became the foundation for the use of embryological techniques in endangered species breeding programs. The cheetah is a member of the cat family (Felidae), which includes thirty-seven species. According to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) all Felidae species are currently threatened or endangered, with the exception of the domestic cat (Felinus catus). Cheetahs are an internationally recognized charismatic megafauna species, prized zoo specimens, difficult to breed, and the basis of many conservation campaigns. Like most species, cheetahs have not traditionally been studied; only a few "model" organisms have been thoroughly researched in a laboratory setting. This research revealed that the difficulty observed in breeding cheetahs in captivity is due to their lack of genetic diversity.