Wilhelm Ludvig Johannsen studied plants and helped found the field of genetics, contributing methods and concepts to the study of heredity around the turn of the twentieth century in Denmark. His experiments on heredity and variation in plants influenced the methods and techniques of geneticists, and his distinction between the genotype of an organism-its hereditary disposition-and its phenotype-its observable characteristics-remains at the core of contemporary biology. Johannsen criticized biological explanations that relied on concepts such as vitalism and teleology. For an alternative, he advocated a realist and materialist approach to biology, but one that did not attempt to reduce biological phenomena to the laws of physics and chemistry.
Wilhelm Friedrich Phillip Pfeffer studied plants in Germany during the late nineteenth and early twentieth centuries. He started his career as an apothecary, but Pfeffer also studied plant physiology, including how plants move and react to changes in light, temperature, and osmotic pressure. He created the Pfeffer Zelle apparatus, also known as the Pfeffer Cell, to study osmosis in plants. PfefferÕs experiments led to new theories about the structure and development of plants.
Johann Gregor Mendel studied plants and their patterns of inheritance in Austria during the nineteenth century. Mendel experimented with the pea plant, Pisum, and his publication, 'Versuche uber Pflanzenhybriden' (“Experiments on Plant Hybridization”), published in 1866, revolutionized theories of trait inheritance. Mendel’s discoveries relating to factors, traits, and how they pass between generations of organisms enabled scientists in the twentieth century to build theories of genetics.
Matthias Jacob Schleiden helped develop the cell theory in Germany during the nineteenth century. Schleiden studied cells as the common element among all plants and animals. Schleiden contributed to the field of embryology through his introduction of the Zeiss microscope lens and via his work with cells and cell theory as an organizing principle of biology.
Muriel Wheldale Onslow studied flowers in England with genetic and biochemical techniques in the early twentieth century. Working with geneticist William Bateson, Onslow used Mendelian principles and biochemical analysis together to understand the inheritance of flower colors at the beginning of the twentieth century. Onslow's study of snapdragons, or Antirrhinum majus, resulted in her description of epistasis, a phenomenon in which the phenotypic effect of one gene is influenced by one or more other genes. She discovered several biochemicals related to color formation. Onslow's methodology also partly contributed to the establishment of the field of chemical genetics.
Wilhelm Johannsen in Denmark first proposed the distinction between genotype and phenotype in the study of heredity in 1909. This distinction is between the hereditary dispositions of organisms (their genotypes) and the ways in which those dispositions manifest themselves in the physical characteristics of those organisms (their phenotypes). This distinction was an outgrowth of Johannsen's experiments concerning heritable variation in plants, and it influenced his pure line theory of heredity. While the meaning and significance of the genotype-phenotype distinction has been a topic of debate-among Johannsen's contemporaries, later biological theorists, and historians of science-many consider the distinction one of the conceptual pillars of twentieth century genetics. Moreover some have used it to characterize the relationships between studies of development, genetics, and evolution.
Johann Gregor Mendel studied patterns of trait inheritance in plants during the nineteenth century. Mendel, an Augustinian monk, conducted experiments on pea plants at St. Thomas’ Abbey in what is now Brno, Czech Republic. Twentieth century scientists used Mendel’s recorded observations to create theories about genetics.