According to the US National Institutes of Health (NIH), the standard American source on stem cell research, three characteristics of stem cells differentiate them from other cell types: (1) they are unspecialized cells that (2) divide for long periods, renewing themselves and (3) can give rise to specialized cells, such as muscle and skin cells, under particular physiological and experimental conditions. When allowed to grow in particular environments, stem cells divide many times. This ability to proliferate can yield millions of stem cells over several months. As long as the stem cells remain unspecialized, meaning they lack tissue-specific structures, they are able to sustain long-term self-renewal.
Matthew Kaufman was a professor of anatomy at the University of Edinburgh, in Edinburgh, UK, who specialized in mouse anatomy, development, and embryology during the late twentieth century. According to the The Herald, he was the first, alongside his colleague Martin Evans, to isolate and culture embryonic stem cells. Researchers initially called those cells Evans-Kaufman cells. In 1992, Kaufman published The Atlas of Mouse Development, a book that included photographs of mice development and mice organs over time. Kaufman also wrote books about UK medical history, phrenology, or the study of craniums as an indicator of character or mental ability, and medical teaching in the eighteenth and nineteenth centuries. Kaufman’s anatomical records and experiments in mouse development contributed to genetic engineering, embryology, and anatomy.
In November 1998, two independent reports were published concerning the first isolation of pluripotent human stem cells, one of which was "Derivation of Pluripotent Stem Cells from Cultured Human Primordial Germ Cells." This paper, authored by John D. Gearhart and his research team - Michael J Shamblott, Joyce Axelman, Shunping Wang, Elizabeith M. Bugg, John W. Littlefield, Peter J. Donovan, Paul D. Blumenthal, and George R. Huggins - was published in Proceedings of the National Academy of Science soon after James A. Thomson and his research team published "Embryonic Stem Cell Lines Derived from Human Blastocysts" in Science. Gearhart 's paper suggested that pluripotent human stem cells, which have the ability to develop into all cell types that make up the body, could be derived from primordial germ cells, which are precursors of fully differentiated germ cells, isolated from embryos. At the time, Gearhart was a professor of obstetrics and gynecology at Johns Hopkins University School of Medicine. With a background in genetics, he had devoted the majority of his research to how genes regulate tissue and embryo formation. However, the successful isolation of mice embryonic stem cells encouraged Gearhart to pursue the isolation of similar cells in humans. The principal difference between human embryonic stem (ES) cells, which Thomson 's team derived, and human embryonic germ (EG) cells, which Gearhart 's team derived, is that human embryonic germ cells are derived from early germ cells. Nonetheless, they are thought to share similar properties to human embryonic stem cells.
Umbilical cord blood (UCB) stem cells are hematopoietic stem cells (HSC) that are recovered from the blood of the umbilical cord and placenta after birth. Umbilical cord blood is rich in cells that express the CD34 molecule, a surface protein that identifies cells as stem cells. Prior to the discovery of UCB stem cells, it was standard procedure to discard the umbilical cord and placenta; now much effort is devoted to raising public awareness and to encouraging people to store or donate cord blood. The importance of these cells lies in potential clinical treatments of blood-borne diseases, as well as the possibility of restoring cells of other lineages, such as cardiac and neural cells. These possible uses have given rise to cord blood stem cell banking, both private and public, where cells can be frozen and stored for later use.
Cord blood banks are institutions designed to store umbilical cord blood (UCB) stem cells. UCB, a source of hematopoietic stem cells (HSCs), has garnered attention from scientific and medical communities since its first successful use in a hematopoietic stem cell transplant (HSCT) in 1988. The umbilical cord is the lifeline by which the growing fetus is nourished by the mother. Once regarded as medical waste, the umbilical cord has become a source of lifesaving treatment. The extraction of HSCs from umbilical cord is non-invasive since the umbilical cord is delivered immediately after the baby exits the womb. The most common application of umbilical cord blood derived stem cells is in unrelated (between donor and host) HSCT. Since these cells are not often needed at the time of delivery, cord blood banks have been established to preserve these cells for future use. In addition to harvesting a supply of cells for treatment, UCB stem cells can be used in research.
Stem cells are undifferentiated cells that are capable of dividing for long periods of time and can give rise to specialized cells under particular conditions. Embryonic stem cells are a particular type of stem cell derived from embryos. According to US National Institutes of Health (NIH), in humans, the term "embryo" applies to a fertilized egg from the beginning of division up to the end of the eighth week of gestation, when the embryo becomes a fetus. Between fertilization and the eighth week of gestation, the embryo undergoes multiple cell divisions. At the eight-cell stage, roughly the third day of division, all eight cells are considered totipotent, which means the cell has the capability of becoming a fully developed human being. By day four, cells begin to separate and form a spherical layer which eventually becomes the placenta and tissue that support the development of the future fetus. A mass of about thirty cells, called the inner cell mass, forms at one end of the sphere and eventually becomes the body. When the sphere and inner cell mass are fully formed, around day 5, the pre-implantation embryo is referred to as a blastocyst. At this point the cells in the inner cell mass have not yet differentiated, but have the ability to develop into any specialized cell type that makes up the body. This property is known as pluripotency. As of 2009, embryonic stem cells refer to pluripotent cells that are generally derived from the inner cell mass of blastocysts.
Nightlight Christian Adoptions et al. v. Thompson et al. was a lawsuit filed in the United States District Court for the District of Columbia on 8 March 2001. The suit was filed because Nightlight Christian Adoptions, a frozen embryo adoption agency, felt that the Guidelines for Research Using Human Pluripotent Stem Cells published by the National Institutes for Health were unlawful and violated the restrictions on human embryo research put into place by the Dickey-Wicker Amendment. Additional plaintiffs with this suit were the Christian Medical Association, adult stem cell researcher Dr. David A. Prentice, and three couples who were clients of Nightlight. The suit was filed against Tommy G. Thompson in his official capacity as Secretary of the Department of Health and Human Services; Dr. Ruth Kirschstein in her official capacity as Acting Director of the National Institutes of Health; the Department of Health and Human Services (HHS); and the National Institutes of Health (NIH).
The recent development of induced pluripotent stem cells (iPSCs) and related technologies has caught the attention of scientists, activists, politicians, and ethicists alike. IPSCs gained immediate international attention for their apparent similarity to embryonic stem cells after their successful creation in 2006 by Shinya Yamanaka and in 2007 by James Thompson and others. Although iPSCs may appear to solve the controversy over the destruction of embryos in embryonic stem cell (ESC) research by involving only the genetic reprogramming of somatic cells, further analysis of the new technique and its subsequent ethical issues could potentially lessen some ethical advantages iPSCs seemingly hold over ESCs.
Advanced Cell Technology, Inc. (ACT) is a biotechnology company that uses stem cell technology to develop novel therapies in the field of regenerative medicine. Formed in 1994, ACT grew from a small agricultural cloning research facility located in Worcester, Massachusetts, into a multi-locational corporation involved in using both human embryonic stem cells (hESC) and human adult stem cells as well as animal cells for therapeutic innovations. Through its work in developing alternative methods for hESC derivation and its public statements, ACT has also played an active role in stimulating and participating in public debate over stem cell research.
Mesenchyme is a type of animal tissue comprised of loose cells embedded in a mesh of proteins and fluid, called the extracellular matrix. The loose, fluid nature of mesenchyme allows its cells to migrate easily and play a crucial role in the origin and development of morphological structures during the embryonic and fetal stages of animal life. Mesenchyme directly gives rise to most of the body's connective tissues, from bones and cartilage to the lymphatic and circulatory systems. Furthermore, the interactions between mesenchyme and another tissue type, epithelium, help to form nearly every organ in the body.