Oswald Theodore Avery studied strains of pneumococcus of the genus Streptococcus in the US in the first half of the twentieth century. This bacterium causes pneumonia, a common cause of death at the turn of the twentieth century. In a 1944 paper, Avery demonstrated with colleagues Colin Munro MacLeod and Maclyn McCarty that deoxyribonucleic acid, or DNA, instead of protein, formed the material of heritable transformation in bacteria. Avery helped untangle some of the relationships between genes and developmental processes.
Francois Jacob studied in bacteria and bacteriophages at the Institut Pasteur in Paris, France, in the second half of the twentieth century. In 1965, Jacob won the Nobel Prize in Physiology or Medicine with Andre M. Lwoff and Jacques L. Monod for their work on the genetic control of enzyme synthesis. Jacob studied how genes control and regulate metabolic enzymes in the bacterium Escherichia coli (E. coli) and in lysogenic bacterial systems. He contributed to theories of transcriptional gene regulation, the operon model, and the distinction between structural and regulatory genes. Jacob also introduced the concept of bricolage (tinkering) in evolutionary biology.
In a series of experiments during mid 1930s, a team of researchers in New York helped establish that bacteria of the species Toxoplasma gondii can infect humans, and in infants can cause toxoplasmosis, a disease that inflames brains, lungs, and hearts, and that can organisms that have it. The team included Abner Wolf, David Cowen, and Beryl Paige. They published the results of their experiment in Human Toxoplasmosis: Occurrence in Infants as an Encephalomyelitis Verification of Transmission to Animals. Toxoplasmosis is an infection that causes inflammations in the brain (encephalitis), heart (myocarditis), and lungs (pneumonitis). The disease is caused in organisms that consume items contaminated by the protozoan parasite Toxoplasma gondii. The bacteria can transfer from pregnant women to their fetuses during pregnancy (congenitally), and it can lead those fetuses to develop physical deformities and mental disabilities. The 1930s experiments established Toxoplasma gondii as a human pathogen and helped increase research into congenital toxoplasmosis, enabling later researchers to develop measures to prevent against the disease in pregnant women.
L'Institut Pasteur (The Pasteur Institute) is a non-profit private research institution founded by Louis Pasteur on 4 June 1887 in Paris, France. The Institute's research focuses on the study of infectious diseases, micro-organisms, viruses, and vaccines. As of 2014, ten scientists have received Nobel Prizes in physiology or medicine for the research they have done at the Pasteur Institute. Contrary to the way genetics was studied in US research universities during the mid-twentieth century, the genetic research conducted at the Pasteur Institute at the same time did not rest on a conceptual separation between embryology and evolution. According to historian Michel Morange from the Ecole Normale Superieure in Paris, France, this difference enabled Pasteurian scientists to develop the concepts of regulatory genes and of developmental genes.
Lysogenic bacteria, or virus-infected bacteria, were the primary experimental models used by scientists working in the laboratories of the Pasteur Institute in Paris, France, during the 1950s and 1960s. Historians of science have noted that the use of lysogenic bacteria as a model in microbiological research influenced the scientific achievements of the Pasteur Institute's scientists. Francois Jacob and Jacques Monod used lysogenic bacteria to develop their operon model of gene regulation, to investigate the cellular regulatory mechanisms of the lysogenic life cycle, and to infer the process of cellular differentiation in the development of more complex eukaryotes.
Bacteria of the genus Wolbachia are bacteria that live within the cells of their hosts. They infect a wide range of arthropods (insects, arachnids, and crustaceans) and some nematodes (parasitic roundworms). Scientists estimate that Wolbachia exist in between seventeen percent and seventy-six percent of arthropods and nematodes. The frequency of the bacteria makes them one of the most widespread parasites. In general, they are divided into five groups, from A to E, depending of the species of their host. They cause diverse reproductive and developmental changes on their numerous invertebrate hosts. Several mechanisms, like the feminization of the embryo's sexual characters, are involved in those processes. To reproduce, Wolbachia often exploit their hosts' reproductive processes. Additionally, they are symbiotic in that they are necessary for the normal development of organisms in some species
Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria. In 1959, the researchers published their results in a paper titled 'The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the Synthesis of b-galactosidase by E. coli'. When they compared mutated strains of E. coli to a normal strain, Pardee, Jacob, and Monod identified the abnormal regulation processes and enzymes produced by the mutated genes. The results showed how enzymes break down the molecules that the bacteria ingested. The PaJaMas experiments uncovered some of the molecular mechanisms that regulate how some genes yield enzymes in many species.
Leonard Colebrook was a physician who researched bacteria and infections in England during the twentieth century. In 1936, Colebrook deployed the antibiotic Prontosil to treat puerperal fever, a disorder that results from bacterial infections in the uterine tracts of women after childbirth or abortions. Colebrook also advanced care for burn patients by advocating for the creation of burn units in hospitals and by using antisepsis medication for burn wound infections. Colebrook’s work on treatments for puerperal fever reduced cases of puerperal fever throughout the world.
In 2007, Philippe Horvath and his colleagues explained how bacteria protect themselves against viruses at Danisco, a Danish food company, in Dangé-Saint-Romain, France. Horvath and his team worked to improve the lifespan of bacteria cultures for manufacturing yogurt and ice cream. Specifically, they focused on bacteria’s resistance to bacteriophages, or viruses that infect bacteria. Horvath and his colleagues found that the bacteria used to culture yogurt, Streptococcus thermophilus, has an adaptive immune system that can target specific viruses that have previously infected the bacteria. The immune system is called the CRISPR/cas system, or the clustered regularly interspaced short palindromic repeats/CRISPR associated protein system. Horvath and his colleagues explained how bacteria use CRISPR/cas as an immune system to target viruses and protect themselves from infection. The discovery informed the development of CRISPR/cas as a gene editing tool to modify bacterial, animal, and human genomes.
In 2016, researcher Thomas Gensollen and colleagues published “How Colonization by Microbiota in Early Life Shapes the Immune System,” hereafter, “Microbiota Shapes the Immune System,” in Science. The article reviews [what is known about?] how microbial colonization impacts immune development in newborns. Because the immune system protects the body from infection, an individual’s microbiome composition also affects susceptibility to certain diseases. Specifically, the authors discuss microbe colonization during early life, a time they refer to as the window of opportunity for future disease susceptibility. That window of opportunity is a period where environmental influences more easily shape the infant’s immune cells and their functions. In turn, the authors present that window as an optimal time for treating disorders associated with the microbiome and the immune system. “Microbiota Shapes the Immune System” reviewed data from dozens of articles to show that there is a narrow window during infancy where microbiome interactions directly or indirectly influence immune development, a potential area for interventional methods to target immune development.