The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons. Research into the Notch gene in fruit flies began in the early twentieth century, but not until the end of the twentieth century did researchers begin to uncover, in many different species, the roles of Notch proteins for cell to cell signaling. Researchers have also found that dysfunction in the pathway can contribute to diseases such as cancer and Alzheimer's.
Among other functions, the Notch signaling pathway forestalls the process of myogenesis in animals. The Notch signaling pathway is a pathway in animals by which two adjacent cells within an organism use a protein named Notch to mechanically interact with each other. Myogenesis is the formation of muscle that occurs throughout an animal's development, from embryo to the end of life. The cellular precursors of skeletal muscle originate in somites that form along the dorsal side of the organism. The Notch signaling pathway is active in multiple aspects of somitogenesis, and it continues to be a critical regulator during myogenesis. Throughout the life of an organism, Notch signaling prevents the differentiation of muscle progenitor cells into muscle cells. Such preventions help maintain populations of progenitor cells that can remain dormant until the growth or repair of muscle is necessary, at which point the Notch signal to the muscle progenitor cells is disrupted, and the muscle progenitor cells differentiate into muscle fibers and cells. Without Notch signaling, myogenesis proceeds prematurely and dissipates before mature muscle can form.
Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine. Into the early decades of the twenty-first century, Wieschaus continued his thirty year tenure as a professor at Princeton University in Princeton, New Jersey.
The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes. They found that when those genes were changed or mutated, the mutated genes disrupted the normal development of fruit fly larvae. The researchers called one of the genes hedgehog (abbreviated hh). Nusslein-Volhard, Wieschaus, and Edward B. Lewis, at the California Institute of Technology in Pasadena, California, shared the 1995 Nobel Prize for Physiology or Medicine for their research on how genes control early embryonic development in fruit flies. The hedgehog signaling pathway is conserved across many animal taxa or phyla, from Drosophila to humans. The hedgehog signaling pathway controls several key components of embryonic development, stem-cell maintenance, and it influences the development of some cancers.
The one gene-one enzyme hypothesis, proposed by George Wells Beadle in the US in 1941, is the theory that each gene directly produces a single enzyme, which consequently affects an individual step in a metabolic pathway. In 1941, Beadle demonstrated that one gene in the bread mold Neurospora controlled a single, specific chemical reaction in Neurospora, which one enzyme controlled. In the 1950s, the theory that genes produce enzymes that control a single metabolic step was dubbed the one gene-one enzyme hypothesis by Norman Horowitz, a professor at the California Institute of Technology (Caltech) and an associate of Beadle's. This concept helped researchers characterize genes as chemical molecules, and it helped them identify the functions of those molecules.
Cornelia Isabella Bargmann studied the relationship between genes, neural circuits, and behavior in the roundworm Caenorhabditis elegans (C. elegans) during the twentieth and twenty-first centuries in the US. Bargmann’s research focused on how the sense of smell (olfaction) in the nematode word Caenorhabditis elegans. She provided a model to study how neural circuits develop and function in the human brain, as the genetic regulatory pathways are similar. She also studied how neurons develop and form connections to influence sensory abilities, and how chemicals called neuropeptides influence reproductive behavior in C. elegans. Such studies enabled researchers to make inferences about similar processes in other organisms, such as humans.
Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.
The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.
The General Embryological Information Service (GEIS) was an annual report published by the Hubrecht Laboratory in Utrecht, The Netherlands from 1949 to 1981 that disseminated contemporary research information to developmental biologists. The purpose of the annual report was to catalog the names, addresses, and associated research of every developmental biologist in the world. Pieter Nieuwkoop edited each issue from 1949 until 1964, when Job Faber began assisting Nieuwkoop. Bert Z. Salome joined the editing team in 1968 before Nieuwkoop ceased editing duties in 1971. Faber and Salome remained the editors from 1971 until the periodical's final year of circulation in 1981. The Hubrecht Laboratory, a national laboratory created to house a large collection of comparative embryological materials and loan them to interested researchers, sponsored the publication after World War II to facilitate international collaboration and prevent unnecessary duplication of work. The catalog of researchers and the scientific topics grew in number and variety as the field of developmental biology changed during the publication's thirty-two year history.
Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.