Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely. Telomerase is also necessary for stem cells to replicate themselves and to develop into more specialized cells in embryos and fetuses.

The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.

In 2001, Yale University Press published Frederic Lawrence Holmes' book, Meselson, Stahl, and the Replication of DNA: A History of "The Most Beautiful Experiment in Biology" (Replication of DNA), which chronicles the 1950s debate about how DNA replicates. That experiment verified that DNA replicates semi-conservatively as originally proposed by Watson and Crick. Rather than focusing solely on experiments and findings, Holmes's book presents the investigative processes of scientists studying DNA replication. Based on personal accounts, letter correspondence, and preserved research documents, Replication of DNA serves as a detailed account of the initial issues surrounding DNA replication and the Meselson-Stahl experiment from a scientist's perspective.

On 6 May 1952, at King’s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA’s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA. Franklin took Photo 51 after scientists confirmed that DNA contained genes. Maurice Wilkins, Franklin’s colleague showed James and Francis Crick Photo 51 without Franklin’s knowledge. Watson and Crick used that image to develop their structural model of DNA. In 1962, after Franklin’s death, Watson, Crick, and Wilkins shared the Nobel Prize in Physiology or Medicine for their findings about DNA. Franklin’s Photo 51 helped scientists learn more about the three-dimensional structure of DNA and enabled scientists to understand DNA’s role in heredity.

In May 1953, scientists James Watson and Francis Crick wrote the article “Genetical Implications of the Structure of Deoxyribonucleic Acid,” hereafter “Genetical Implications,” which was published in the journal Nature. In “Genetical Implications,” Watson and Crick suggest a possible explanation for deoxyribonucleic acid, or DNA, replication based on a structure of DNA they proposed prior to writing “Genetical Implications.” Watson and Crick proposed their theory about DNA replication at a time when scientists had recently reached the consensus that DNA contained genes, which scientists understood to carry information that determines an organism’s identity. Watson and Crick’s replication mechanism as presented in “Genetical Implications” contributed to the two scientists sharing a portion of the 1962 Nobel Prize in Physiology or Medicine. With their suggested DNA replication mechanism in “Genetical Implications,” Watson and Crick explained how genes are copied and passed along to new cells and organisms, thereby explaining how the information contained within genes is preserved through generations.

In April 1953, Rosalind Franklin and Raymond Gosling, published “Molecular Configuration in Sodium Thymonucleate,” in the scientific journal Nature. The article contained Franklin and Gosling’s analysis of their X-ray diffraction pattern of thymonucleate or deoxyribonucleic acid, known as DNA. In the early 1950s, scientists confirmed that genes, the heritable factors that control how organisms develop, contained DNA. However, at the time scientists had not determined how DNA functioned or its three-dimensional structure. In their 1953 paper, Franklin and Gosling interpret X-ray diffraction patterns of DNA fibers that they collected, which show the scattering of X-rays from the fibers. The patterns provided information about the three-dimensional structure of the molecule. “Molecular Configuration in Sodium Thymonucleate” shows the progress Franklin and Gosling made toward understanding the three-dimensional structure of DNA.

Franklin William Stahl studied DNA replication, bacteriophages, and genetic recombination in the US during the mid-twentieth and early twenty-first centuries. With his colleague Matthew Meselson, Stahl performed an experiment called the Meselson-Stahl experiment, which provided evidence for a process called semi-conservative DNA replication. Semi-conservative replication is a process in which each strand of a parental DNA double helix serves as a template for newly replicated daughter strands, so that one parental strand is conserved in every daughter double helix. Those findings supported the Watson-Crick Model for DNA replication proposed in 1953 by James Watson and Francis Crick, convincing many biologists about DNA’s structure and replication in the 1950s. Stahl’s genetics research, especially that of DNA replication, showed researchers how genetic information is distributed within a cell and is passed down from cell to cell.

Cornelia Isabella Bargmann studied the relationship between genes, neural circuits, and behavior in the roundworm Caenorhabditis elegans (C. elegans) during the twentieth and twenty-first centuries in the US. Bargmann’s research focused on how the sense of smell (olfaction) in the nematode word Caenorhabditis elegans. She provided a model to study how neural circuits develop and function in the human brain, as the genetic regulatory pathways are similar. She also studied how neurons develop and form connections to influence sensory abilities, and how chemicals called neuropeptides influence reproductive behavior in C. elegans. Such studies enabled researchers to make inferences about similar processes in other organisms, such as humans.

William Thomas Astbury studied the structures of fibrous materials, including fabrics, proteins, and deoxyribonucleic acid, or DNA, in England during the twentieth century. Astbury employed X-ray crystallography, a technique in which scientists use X-rays to learn about the molecular structures of materials. Astbury worked at a time when scientists had not yet identified DNA’s structure or function in genes, the genetic components responsible for how organisms develop and reproduce. He was one of the first scientists to use X-ray crystallography to study the structure of DNA. According to historians, Astbury helped establish the field of molecular biology as he connected microscopic changes in the structure of materials to changes in their large-scale properties. Astbury and his images helped scientists to understand the structure of DNA and its role in genetics.

Subscribe to DNA