Gestational diabetes is a medical condition that causes blood sugar levels to become abnormally high, which manifests for the first-time during pregnancy and typically disappears immediately after birth for around ninety percent of affected women. While many women with the condition do not experience any noticeable symptoms, some may experience increased thirst and urination. Although gestational diabetes is treatable, if left unmanaged, the resulting fetus is more likely to have elevated risks of increased birth weight, birth injuries, low blood sugar, stillbirth, and later development of type 2 diabetes. The International Diabetes Federation estimates that worldwide in 2019, gestational diabetes affected one in six pregnant women, with many cases occurring in women living in low and middle-income countries. Despite the prevalence and risks associated with gestational diabetes, as of 2020, researchers have yet to reach a unified consensus on the best guidelines for diagnosis and treatment.
Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England. The fetal origins hypothesis states that undernutrition in the womb during middle to late pregnancy causes improper fetal growth, which in turn, causes a predisposition to certain diseases in adulthood. In addition to nutritional impacts, researchers have studied the fetal programming effects of many factors, such as maternal anxiety or violence during pregnancy. Researchers proposing the concept of fetal programming established a new area of research into the developmental causes of disease, pointing towards the in utero environment and its critical role in healthy human development.