In 2004, Amanda J. Drake and Brian R. Walker published “The Intergenerational Effects of Fetal Programming: Non-genomic Mechanisms for the Inheritance of Low Birth Weight and Cardiovascular Risk,” hereafter, “The Intergenerational Effects,” in the Journal of Endocrinology. In their article, the authors assert that cardiovascular disease may develop via fetal programming, which is when a certain event occurring during a critical point of pregnancy affects the fetus long after birth. Drake and Walker were among the first to show that the programming effects of cardiovascular disease could be sustained across generations through non-genetic means. In “The Intergenerational Effects,” the authors identify how non-genetic mechanisms may perpetuate fetal programming influences over generations, highlighting the importance for further research on fetal programming.

Fetal programming, or prenatal programming, is a concept that suggests certain events occurring during critical points of pregnancy may cause permanent effects on the fetus and the infant long after birth. The concept of fetal programming stemmed from the fetal origins hypothesis, also known as Barker’s hypothesis, that David Barker proposed in 1995 at the University of Southampton in Southampton, England. The fetal origins hypothesis states that undernutrition in the womb during middle to late pregnancy causes improper fetal growth, which in turn, causes a predisposition to certain diseases in adulthood. In addition to nutritional impacts, researchers have studied the fetal programming effects of many factors, such as maternal anxiety or violence during pregnancy. Researchers proposing the concept of fetal programming established a new area of research into the developmental causes of disease, pointing towards the in utero environment and its critical role in healthy human development.

Subscribe to Embryo and Fetal Development