Of Sir D'Arcy Thompson's nearly 300 publications, the theoretical treatise On Growth and Form, first published in 1917, remains the principal work for which he is remembered. This substantial book is still in print today, and merited an editorial review and introductory essays by two important twentieth century biologists, John Tyler Bonner and Stephen Jay Gould. Growth and Form was immediately well-received for both its literary style and its scientific significance, as discussed by the biologist Sir Peter Medawar. Despite being almost continuously in print since its first publication, the exact influence of Growth and Form on the biological sciences, although widely acknowledged, is yet difficult to characterize. In this work Thompson aimed to unite physics and biology through an analysis of the physical limitations to the growth and structure of organisms. For developmental biologists in particular, Thompson's theory on the transformation of biological forms, presented in the final chapter of Growth and Form, was thought provoking.

Known by many for his wide-reaching interests and keen thinking, D'Arcy Wentworth Thompson was one of Britain's leading scientific academics in the first few decades of the twentieth century. A prodigious author, Thompson published some 300 papers, books, and articles in the biological sciences, classics, oceanography, and mathematics. He was a famous lecturer and conversationalist-a true "scholar-naturalist," as his daughter wrote in her biography of her father. Of his numerous publications, the acclaimed On Growth and Form (1917, 1945) is generally considered to be his most influential. Many highly respected biologists-like John Tyler Bonner, Joseph Woodger, Sir Peter Medawar, and Stephen Jay Gould-have argued for the importance of On Growth and Form for the history of twentieth century biology. In this work Thompson integrates a causal understanding of biological growth and structure with the mathematics of physical laws. Many developmental biologists have drawn inspiration from reading Thompson's magnum opus, by focusing on this approach to understanding the physical limitations and mathematical processes of developmental growth and morphological form.