Johannes Holtfreter made important discoveries about the properties of the organizer discovered by Hans Spemann. Although he spent much time away from the lab over many years, he was a productive researcher. His colleagues noted that the time he spent away helped revitalize his ideas. He is credited with the development of a balanced salt medium to allow embryos to develop; the discovery that dead organizer tissue retains inductive abilities; and the development of specification, competence, and distribution of fate maps in the developing frog embryo. He was the sole author on all but three of the more than sixty papers he published. Johannes Holtfreter was born on 9 January 1901 in Richtenberg, Germany. He was the middle of three children, the only boy, and grew up collecting and drawing butterflies and other animals in the surrounding area. When World War I began, his family moved to Strausland, Germany, to avoid the war.

For more than 2000 years, embryologists, biologists, and philosophers have studied and detailed the processes that follow fertilization. The fertilized egg proliferates into cells that begin to separate into distinct, identifiable zones that will eventually become adult structures through the process of morphogenesis. As the cells continue to multiply, patterns form and cells begin to differentiate, and eventually commit to their fate. This progression of events can be examined by following the developmental path of each progenitor cell and creating a two-dimensional representation where cell location and fate can be labeled and marked. Fate mapping is a method for tracing cell lineages and a fundamental tool of developmental biology and embryology.

Early development occurs in a highly organized and orchestrated manner and has long attracted the interest of developmental biologists and embryologists. Cell lineage, or the study of the developmental differentiation of a blastomere, involves tracing a particular cell (blastomere) forward from its position in one of the three germ layers. Labeling individual cells within their germ layers allows for a pictorial interpretation of gastrulation. This chart or graphical representation detailing the fate of each part of an early embryo is referred to as a fate map. In essence, each fate map portrays the developmental history of each cell.