Nerve growth factor (NGF) is a signaling protein and growth factor implicated in a wide range of development and maintenance functions. NGF was discovered through a series of experiments in the 1950s on the development of the chick nervous system. Since its discovery, NGF has been found to act in a variety of tissues throughout development and adulthood. It has been implicated in immune function, stress response, nerve maintenance, and in neurodegenerative diseases. It is named for its effect on the critical role it plays in the growth and organization of the nervous system during embryonic development.
In "Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo," Rita Levi-Montalcini and Viktor Hamburger explored the effects of two nerve growth stimulating tumors; mouse sarcomas 180 and 37. This experiment led to the discovery that nerve growth factor was a diffusible chemical and later to discoveries that the compound was a protein. Although this paper was an important step in the discovery of nerve growth factor, the term "nerve growth factor" was not used in this paper. It was instead referred to as a "growth promoting agent." The discovery of nerve growth factor earned Levi-Montalcini and Stanley Cohen, who also discovered epidermal growth factor, the 1986 Nobel Prize in Physiology or Medicine.
The developmental stages of the chick embryo were examined by Viktor Hamburger and Howard L. Hamilton in "A Series of Normal Stages in the Development of the Chick Embryo," published in the Journal of Morphology in 1951. These stages were published to standardize the development of the chick based on varying laboratory conditions and genetic differences. The stages Hamburger and Hamilton assigned were determined by the visible features of the chick embryo. The first stage begins just prior to the primitive streak, with the formation of the embryonic shield, and the final stage, forty-six, ends at the hatching of the chick.
In this paper Viktor Hamburger and Rita Levi-Montalcini collaborated to examine the effects of limb transplantation and explantation on neural development. In 1947 Hamburger invited Levi-Montalcini to his lab at Washington University in St. Louis to examine this question. Independently, each had previously arrived at opposing conclusions based on the same data. Hamburger concluded that limb transplantations caused the ganglia to develop more connections and grow larger while Levi-Montalcini concluded that the ganglia first produce a large amount of neurons, then degenerate the unsuccessful neurons. She concluded that larger ganglia must be due to the increase in successful connections. This joint paper, published in the Journal of Experimental Zoology in 1949, corroborated the findings reported by Levi-Montalcini and established that nerve degeneration is an integral part of development.
Christian Heinrich Pander, often remembered as the father of embryology, also explored the fields of osteology, zoology, geology, and anatomy. He was born in Riga, Latvia, on 24 July 1794. Pander, with an eclectic history of research, is best remembered for his discovery and explanation of the structure of the chick blastoderm, a term he coined. In doing so, Pander was able to achieve the goal set forth by his teacher, Ignaz Döllinger, to reinvigorate the study of the chick embryo as a means of further exploring the science of embryology as a whole. His findings paved the way for the work of Karl Ernst von Baer, who would later revolutionize the field of embryology with his research.
"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.