Cornelia Isabella Bargmann studied the relationship between genes, neural circuits, and behavior in the roundworm Caenorhabditis elegans (C. elegans) during the twentieth and twenty-first centuries in the US. Bargmann’s research focused on how the sense of smell (olfaction) in the nematode word Caenorhabditis elegans. She provided a model to study how neural circuits develop and function in the human brain, as the genetic regulatory pathways are similar. She also studied how neurons develop and form connections to influence sensory abilities, and how chemicals called neuropeptides influence reproductive behavior in C. elegans. Such studies enabled researchers to make inferences about similar processes in other organisms, such as humans.
In 2003, molecular biology and genetics researchers Coleen T. Murphy, Steven A. McCarroll, Cornelia I. Bargmann, Andrew Fraser, Ravi S. Kamath, Julie Ahringer, Hao Li, and Cynthia Kenyon conducted an experiment that investigated the cellular aging in, Caenorhabditis elegans (C. elegans) nematodes. The researchers investigated the interactions between the transcription factor DAF-16 and the genes that regulate the production of an insulin-like growth factor 1 (IGF-1-like) protein related to the development, reproduction, and aging in C. elegans. Transcription factors, like DAF-16, are proteins that regulate the transcription of deoxyribonucleic acid (DNA) into messenger ribonucleic acid (mRNA), which later determines which proteins the cell produces. The research team's experiment suggested that an increase in the activity of the DAF-16 protein decreases the transcription of the genes that regulate the production of IGF-1-like proteins, increasing lifespan in nematodes. The team published their results in the article 'Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans' in Nature in June 2003. By comparing the regulation of gene expression in C. elegans with similar genes and pathways in humans, Murphy's research team sought to better understand cellular function and aging in humans.