George McDonald Church studied DNA from living and from extinct species in the US during the twentieth and twenty-first centuries. Church helped to develop and refine techniques with which to describe the complete sequence of all the DNA nucleotides in an organism's genome, techniques such as multiplex sequencing, polony sequencing, and nanopore sequencing. Church also contributed to the Human Genome Project, and in 2005 he helped start a company, the Personal Genome Project. Church proposed to use DNA from extinct species to clone and breed new organisms from those species.

In 2012, Jennifer Doudna, Emmanuelle Charpentier from the University of California, Berkeley, in Berkeley, California, and Umeå University in Umeå, Sweden, along with their colleagues discovered how bacteria use the CRISPR/cas 9 system to protect themselves from viruses. The researchers also proposed the idea of using the CRISPR/cas 9 system as a genome editing tool. In bacteria and archaea, researchers had found that CRISPR, which stands for clustered regularly interspaced short palindromic repeats, and CRISPR associated proteins, or cas, helped organisms recognize and silence the genetic material of viruses that have infected the cell before. In their experiment, Doudna, Charpentier, and their colleagues found how the specific molecules in bacteria can recognize and cut specific DNA sequences of invading viruses. Doudna, Charpentier, and their colleagues’ discovery of the CRISPR/cas 9 mechanism and proposal of using CRISPR/cas 9 for genetic editing led to the successful engineering of CRISPR/cas 9 as a novel method of editing genomes.

In 2013, George Church and his colleagues at Harvard University in Cambridge, Massachusetts published RNA-Guided Human Genome Engineering via Cas 9, in which they detailed their use of RNA-guided Cas 9 to genetically modify genes in human cells. Researchers use RNA-guided Cas 9 technology to modify the genetic information of organisms, DNA, by targeting specific sequences of DNA and subsequently replacing those targeted sequences with different DNA sequences. Church and his team used RNA-guided Cas 9 technology to edit the genetic information in human cells. Church and his colleagues also created a database that identified 190,000 unique guide RNAs for targeting almost half of the human genome that codes for proteins. In RNA-Guided Human Genome Engineering via Cas 9, the authors demonstrated that RNA-guided Cas 9 was a robust and simple tool for genetic engineering, which has enabled scientists to more easily manipulate genomes for the study of biological processes and genetic diseases.

In 2015, Junjiu Huang and his colleagues reported their attempt to enable CRISPR/cas 9-mediated gene editing in nonviable human zygotes for the first time at Sun Yat-Sen University in Guangzhou, China. Their article, CRISPR /Cas9-mediated Gene Editing in Human Tripronuclear Zygotes, was published in Protein and Cell. Nonviable zygotes are sperm-fertilized eggs that cannot develop into a fetus. Researchers previously developed the CRISPR/cas 9 gene editing tool, which is a system that originated from bacteria as a defense mechanism against viruses. In their article, Huang and his team demonstrate that CRISPR/cas-9 gene editing can be used to correct a mutation in zygotes, or sperm-fertilized egg cells. However, they report that using CRISPR/cas 9 to edit those nonviable human zygotes led to off-target changes and, therefore, to unintended mutations in the human genome. Before Huang and his colleagues' experiment, CRISPR/cas 9 had never been used on human zygotes. In their article, Huang and his colleagues demonstrated the need to improve CRISPR/cas 9 gene editing accuracy before using it for gene therapy to treat and correct genetic diseases in humans.

In 2007, Philippe Horvath and his colleagues explained how bacteria protect themselves against viruses at Danisco, a Danish food company, in Dangé-Saint-Romain, France. Horvath and his team worked to improve the lifespan of bacteria cultures for manufacturing yogurt and ice cream. Specifically, they focused on bacteria’s resistance to bacteriophages, or viruses that infect bacteria. Horvath and his colleagues found that the bacteria used to culture yogurt, Streptococcus thermophilus, has an adaptive immune system that can target specific viruses that have previously infected the bacteria. The immune system is called the CRISPR/cas system, or the clustered regularly interspaced short palindromic repeats/CRISPR associated protein system. Horvath and his colleagues explained how bacteria use CRISPR/cas as an immune system to target viruses and protect themselves from infection. The discovery informed the development of CRISPR/cas as a gene editing tool to modify bacterial, animal, and human genomes.

Subscribe to Clustered Regularly Interspaced Short Palindromic Repeats