The Y-chromosome is one of a pair of chromosomes that determine the genetic sex of individuals in mammals, some insects, and some plants. In the nineteenth and twentieth centuries, the development of new microscopic and molecular techniques, including DNA sequencing, enabled scientists to confirm the hypothesis that chromosomes determine the sex of developing organisms. In an adult organism, the genes on the Y-chromosome help produce the male gamete, the sperm cell. Beginning in the 1980s, many studies of human populations used the Y-chromosome gene sequences to trace paternal lineages. In mammals, the Y-chromosomes contain the master-switch gene for sex determination, called the sex-determining region Y, or the SRY gene in humans. In most normal cases, if a fertilized egg cell, called a zygote, has the SRY gene, the zygote develops into an embryos that has male sex traits. If the zygote lacks the SRY gene or if the SRY gene is defective, the zygote develops into an embryo that has female sex traits.
Hermann Joseph Muller conducted three experiments in 1926 and 1927 that demonstrated that exposure to x-rays, a form of high-energy radiation, can cause genetic mutations, changes to an organism's genome, particularly in egg and sperm cells. In his experiments, Muller exposed fruit flies (Drosophila) to x-rays, mated the flies, and observed the number of mutations in the offspring. In 1927, Muller described the results of his experiments in "Artificial Transmutation of the Gene" and "The Problem of Genic Modification". His discovery indicated the causes of mutation and for that research he later received the Nobel Prize in Physiology or Medicine in 1946. Muller's experiments with x-rays established that x-rays mutated genes and that egg and sperm cells are especially susceptible to such genetic mutations.