Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.
In 1962 researcher John Bertrand Gurdon at the University of Oxford in Oxford, England, conducted a series of experiments on the developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. In the experiments, Gurdon conducted nuclear transplantation, or cloning, of differentiated cells, or cells that have already specialized to become one cell type or another, in tadpoles. Gurdon's experiment showed that differentiated adult cells could be induced to an undifferentiated state, where they could once again become multiple cell types. Gurdon's experiment disproved the theory that differentiated cells could not be undifferentiated or dedifferentiated into a new type of differentiated cell. Gurdon's experiment demonstrated nuclear transplantation, also called cloning, using differentiated cells.
In 2009, Shoukhrat Mitalipov, Masahito Tachibana, and their team of researchers developed the technology of mitochondrial gene replacement therapy to prevent the transmission of a mitochondrial disease from mother to offspring in primates. Mitochondria contain some of the body's genetic material, called mitochondrial DNA. Occasionally, the mitochondrial DNA possesses mutations. Mitalipov and Tachibana, researchers at the Oregon National Primate Research Center in Beaverton, Oregon, developed a technique to remove the nucleus of the mother and place it in a donor oocyte, or immature egg cell, with healthy mitochondria. The resulting offspring contain the genetic material of three separate individuals and do not have the disease. Mitalipov and Tachibana's technology of mitochondrial gene replacement built on decades of research by different scientists and enables researchers to prevent the transmission of human mitochondrial diseases from mother to offspring.
In 1975 John Gurdon, Ronald Laskey, and O. Raymond Reeves published "Developmental Capacity of Nuclei Transplanted from Keratinized Skin Cells of Adult Frogs," in the Journal of Embryology and Experimental Morphology. Their article was the capstone of a series of experiments performed by Gurdon during his time at Oxford and Cambridge, using the frog species Xenopus laevis. Gurdon's first experiment in 1958 showed that the nuclei of Xenopus cells maintained their ability to direct normal development when transplanted. The goal of Gurdon's experiments was to show that specialized adult cells could maintain the information and capacity to direct normal development. He asked whether cells undergo permanent changes once they become fully specialized. Gurdon, Laskey, and Reeves's publication was important to embryology because it shed light on that very question.