When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes. Chimeras can occur when two independent organisms fuse at a cellular level to form one organism, or when a population of cells is transferred from one organism to another. Chimeras created in laboratories have helped scientists to identify developmental mechanisms and processes across species. Some experiments involving chimeras aim to provide further knowledge of immune reactions against disease or to create animal models to understand human disease.
To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007. The document provided scientific and legal background, described ethical and social issues associated with research using part-human part-animal embryos, supplied a questionnaire for citizens to return to the HFEA with their opinions, and offered a list of resources for further reading to stimulate public debate. The strategy of surveying the public provided a template for developing further policy in the United Kingdom and other countries, as well as for educating citizens on embryological research.
In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and debates from earlier in 2007. The HFEA issued a statement in September 2007, followed by an official report published on 1 October 2007. Their report on human-animal chimeras set a worldwide precedent for discussions of the ethical use of those embryos in labs. The HFEA's report led the UK government to pass legislature about the use of human-animal cytoplasmic hybrid embryos for research in the UK.
In 2002, after applying for government assistance in the state of Washington, Lydia Fairchild was told that her two children were not a genetic match with her and that therefore, biologically, she could not be their mother. Researchers later determined that the genetic mismatch was due to chimerism, a condition in which two genetically distinct cell lines are present in one body. The state accused Fairchild of fraud and filed a lawsuit against her. Following evidence from another case of chimerism documented in The New England Journal of Medicine in a woman named Karen Keegan, Fairchild was able to secure legal counsel and establish evidence of her biological maternity. A cervical swab eventually revealed Fairchild’s second distinct cell line, showing that she had not genetically matched her children because she was a chimera. Fairchild’s case was one of the first public accounts of chimerism and has been used as an example in subsequent discussions about the validity and reliability of DNA evidence in legal proceedings within the United States.
In 2007, Françoise Baylis and Jason Scott Robert published “Part-Human Chimeras: Worrying the Facts, Probing the Ethics” in The American Journal of Bioethics. Within their article, hereafter “Part-Human Chimeras,” the authors offer corrections on “Thinking About the Human Neuron Mouse,” a report published in The American Journal of Bioethics in 2007 by Henry Greely, Mildred K. Cho, Linda F. Hogle, and Debra M. Satz, which discussed the debate on the ethics of creating part-human chimeras. Chimeras are organisms that contain two or more genetically distinct cell lines. Both publications discuss chimeras with DNA from different species, specifically in response to studies in which scientists injected human brain cells into mice. “Part-Human Chimeras,” contributes to a chain of ethical and scientific discussion that occurred in the mid-2000s on whether people should be able to conduct research on chimeras, especially in embryos.
In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the intentional combination of human and nonhuman cells, tissues, or organs at any stage of development. He specifically criticizes restrictions against creating part-human animals made by the National Academy of Sciences, or NAS, in 2005, arguing that while they ensure that such research is morally justifiable, they might limit scientists from conducting useful science using part-human animals or entities. Robert challenges the moral rationales behind prohibiting chimera research, arguing that they may impede scientists from conducting research that could have important benefits to biology and medicine, and suggests how to balance the conflicting moral and scientific needs of such science.
In 1980 Janet Rossant and William I. Frels published their paper, "Interspecific Chimeras in Mammals: Successful Production of Live Chimeras Between Mus musculus and Mus caroli," in Science. Their experiment involved the first successful creation of interspecific mammalian chimeras. Mammalian chimeras are valuable for studying early embryonic development. However, in earlier studies, clonal analysis was restricted by the lack of a cell marker, present at all times, that makes a distinction between the two parental cell types in situ. To battle this limitation, Rossant and Frels decided to make chimeras from embryos of two different species in order to have sufficient genetic differences so that, in any tissue type, the two cell types could be clearly identified. In their paper Rossant and Frels describe the successful creation of live chimeras between Mus musculus and Mus caroli. These two species of mice are more closely related than chimeras produced previously. The chimeras created in the experiment showed no sign of selection against one cell type or the other. Therefore, they are valuable for clonal analysis of development. Rossant and Frels were the first to successfully produce an interspecific mammalian chimera that experienced normal development.
In 1984 Sabine Meinecke-Tillmann and Burkhard Meinecke published their article "Experimental Chimeras - Removal of Reproductive Barrier Between Sheep and Goat" in Nature. Their study conquered the reproductive barrier between sheep and goats through embryo manipulation. Their article appeared in Nature on the same day that a similar experiment, conducted by Carole Fehilly, Steen Willadsen, and Elizabeth Tucker was published regarding reproductive barriers between sheep and goats. In previous experiments involving the transplantation of sheep embryos into recipient goats or vice versa, the embryos did not survive past the initial weeks of pregnancy. Hybridization experiments had also failed between the species. Although scientists were unsure of the reasons that hybrid eggs from donor sheep did not survive, they attributed the death of the hybrid eggs from donor goats to immunological responses. Meinecke-Tillmann and Meinecke created interspecific chimeric embryos in order to address the reproductive obstacles between the species. These embryos were transferred to sheep, and a sheep successfully brought a goat kid to term.