Santiago Felipe Ramon y Cajal investigated brains in the nineteenth and twentieth centuries in Spain. He identified and individuated many components of the brain, including the neuron and the axon. He used chick embryos instead of adult animals, then customary in brain research, to study the development and physiology of the cerebellum, spinal cord, and retina. Ramon y Cajal received the Nobel Prize in Physiology and Medicine in 1906, along with Camillo Golgi, for his work on the structure of the nervous system.
When cells-but not DNA-from two or more genetically distinct individuals combine to form a new individual, the result is called a chimera. Though chimeras occasionally occur in nature, scientists have produced chimeras in a laboratory setting since the 1960s. During the creation of a chimera, the DNA molecules do not exchange genetic material (recombine), unlike in sexual reproduction or in hybrid organisms, which result from genetic material exchanged between two different species. A chimera instead contains discrete cell populations with two unique sets of parental genes. Chimeras can occur when two independent organisms fuse at a cellular level to form one organism, or when a population of cells is transferred from one organism to another. Chimeras created in laboratories have helped scientists to identify developmental mechanisms and processes across species. Some experiments involving chimeras aim to provide further knowledge of immune reactions against disease or to create animal models to understand human disease.
In 1991, the United Kingdom established the Human Fertilisation and Embryology Authority (HFEA) as a response to technologies that used human embryos. The HFEA is a regulatory power of the Health and Social Services Department in London, UK, that oversees the implementation of reproductive technologies and the use of embryos in research within the United Kingdom. It establishes protocols by which researchers may use human embryos, develops legislation on how human embryos are stored and used, monitors human embryological research and artificial fertilization procedures, and prosecutes those who violate terms of embryo use. The HFEA collects, monitors, and distributes data related to human embryology and embryological research. The HFEA also records international studies involving human embryos and fertilization, hosts ethical debates, and shares collected information with the public and scientific communities.
To educate its citizens about research into chimeras made from human and non-human animal cells, the United Kingdom's Human Fertilisation Embryology Authority published the consultation piece Hybrids and Chimeras: A Consultation on the Ethical and Social Implications of Creating Human/Animal Embryos in Research, in 2007. The document provided scientific and legal background, described ethical and social issues associated with research using part-human part-animal embryos, supplied a questionnaire for citizens to return to the HFEA with their opinions, and offered a list of resources for further reading to stimulate public debate. The strategy of surveying the public provided a template for developing further policy in the United Kingdom and other countries, as well as for educating citizens on embryological research.
In 2007, the Human Fertilisation and Embryology Authority in London, UK, published Hybrids and Chimeras: A Report on the Findings of the Consultation, which summarized a public debate about research on, and suggested policy for, human animal chimeras. The HFEA formulated the report after conducting a series of surveys and debates from earlier in 2007. The HFEA issued a statement in September 2007, followed by an official report published on 1 October 2007. Their report on human-animal chimeras set a worldwide precedent for discussions of the ethical use of those embryos in labs. The HFEA's report led the UK government to pass legislature about the use of human-animal cytoplasmic hybrid embryos for research in the UK.
Since the 1950s, scientists have developed interspecies blastocysts in laboratory settings, but not until the 1990s did proposals emerge to engineer interspecies blastocysts that contained human genetic or cellular material. Even if these embryos were not permitted to mature to fetal stages, their ethical and political status became debated within nations attempting to use them for research. To study cell differentiation and embryonic development and causes of human diseases, interspecies-somatic-cell-nuclear-transfer -derived (iSCNT) humanesque blastocysts provided opportunities for research and therapy development. Such a technology also involved ethical debates.
The Golgi staining technique, also called the black reaction after the stain's color, was developed in the 1870s and 1880s in Italy to make brain cells (neurons) visible under the microscope. Camillo Golgi developed the technique while working with nervous tissue, which required Golgi to examine cell structure under the microscope. Golgi improved upon existing methods of staining, enabling scientists to view entire neurons for the first time and changing the way people discussed the development and composition of the brain's cells. Into the twenty-fist century, Golgi's staining method continued to inform research on the nervous system, particularly regarding embryonic development.