Charles Robert Cantor helped sequence the human genome, and he developed methods to non-invasively determine the genes in human fetuses. Cantor worked in the US during the twentieth and twenty-first centuries. His early research focused on oligonucleotides, small molecules of DNA or RNA. That research enabled the development of a technique that Cantor subsequently used to describe nucleotide sequences of DNA, a process called sequencing, in humans. Cantor was the principal scientist for the Human Genome Project, for which scientists sequenced the entirety of the human genome in 2003. Afterwards, Cantor became the chief scientific officer for Sequenom Inc., a company that provided non-invasive prenatal genetic testing. Such tests use a pregnant woman's blood to identify genetic mutations in a fetus during the first trimester of pregnancy.
The Cell in Development and Inheritance, by Edmund Beecher Wilson, provided a textbook introduction to cell biology for generations of biologists in the twentieth century. In his book, Wilson integrated information about development, inheritance, chromosomes, organelles, and the structure and functions of cells. First published in 1896, the book started with 371 pages, grew to 483 pages in the second edition that appeared in 1900, and expanded to 1,231 pages by the third and final edition in 1925. Wilson dedicated the book to the cell biologist Theodor Boveri, whose work established the roles of chromosomes in cell division. With its explanations and many illustrations and diagrams, The Cell in Development and Inheritance enabled embryologists to better understand development in terms of cell structure and function.
In a series of experiments during mid 1930s, a team of researchers in New York helped establish that bacteria of the species Toxoplasma gondii can infect humans, and in infants can cause toxoplasmosis, a disease that inflames brains, lungs, and hearts, and that can organisms that have it. The team included Abner Wolf, David Cowen, and Beryl Paige. They published the results of their experiment in Human Toxoplasmosis: Occurrence in Infants as an Encephalomyelitis Verification of Transmission to Animals. Toxoplasmosis is an infection that causes inflammations in the brain (encephalitis), heart (myocarditis), and lungs (pneumonitis). The disease is caused in organisms that consume items contaminated by the protozoan parasite Toxoplasma gondii. The bacteria can transfer from pregnant women to their fetuses during pregnancy (congenitally), and it can lead those fetuses to develop physical deformities and mental disabilities. The 1930s experiments established Toxoplasma gondii as a human pathogen and helped increase research into congenital toxoplasmosis, enabling later researchers to develop measures to prevent against the disease in pregnant women.
At the turn of the twentieth century, Edmund B. Wilson performed experiments to show where germinal matter was located in molluscs. At Columbia University in New York City, New York, Wilson studied what causes cells to differentiate during development. In 1904 he conducted his experiments on molluscs, and he modified the theory about the location of germinal matter in the succeeding years. Wilson and others modified the theory of germinal localization to accommodate results that showed the significance of chromosomes in development and heredity.
Menstrual hygiene management, or MHM, is a concept that concerns girls' and women’s access to the appropriate information and resources to manage menstruation. In December 2012, the Joint Monitoring Program, or JMP, was one of the first organizations to define MHM as a global development goal. Since then, other organizations like WaterAid and the United Nations have expanded MHM’s definition to include menstrual education that is biologically accurate and free of taboo and stigma. Many women in low-income countries lack those necessities for MHM due to high prices of menstrual sanitary products, lack of access to clean water and sanitation facilities, and social stigma surrounding menstruation that prevents it from being talked about. However, as more organizations began to frame MHM as an issue of public concern rather than a woman’s private problem, more researchers, organizations, and governmental bodies have begun to address issues at the root of inadequate MHM.
Pearl Luella Kendrick researched prevention for pertussis, commonly known as whooping cough, in Grand Rapids, Michigan, during the mid-1900s. Pertussis is a respiratory disease that mainly affects infants and young children. During the 1920s, pertussis was responsible for more deaths in children in the United States than any other disease. In the 1930s, Kendrick created one of the first pertussis vaccines that underwent large-scale clinical trials. Towards the end of her career, Kendrick helped developed combination vaccines for other common childhood diseases at the time, including diphtheria, tetanus, pertussis, and poliomyelitis. She also studied immune responses in infants whose mothers had pertussis antibodies that transferred to them during pregnancy. Kendrick helped lower the incidence and death rate of pertussis and other common childhood diseases in the US through the creation of vaccines.
Nuclear magnetic resonance imaging (MRI) is a technique to create a three-dimensional image of a fetus. Doctors often use MRIs to image a fetuses after an ultrasound has detected an, or has been inconclusive about an, abnormality. In 1983 researchers in Scotland first used MRI to visualize a fetus. MRIs showed a greater level of fetal detail than ultrasound images, and researchers recognized the relevance of this technique as a means to gather information about fetal development and growth. Researchers later used the technology to take measurements of the uterus, placenta, amniotic fluid, and fetus during the first trimester of pregnancy. MRI provided doctors with a non-invasive method to diagnose and treat fetal abnormalities and maternal conditions such as pre-eclampsia.
Curt Jacob Stern studied radiation and chromosomes in humans and fruit flies in the United States during the twentieth century. He researched the mechanisms of inheritance and of mitosis, or the process in which the chromosomes in the nucleus of a single cell, called the parent cell, split into identical sets and yield two cells, called daughter cells. Stern worked on the Drosophila melanogaster fruit fly, and he provided early evidence that chromosomes exchange genetic material during cellular reproduction. During World War II, he provided evidence for the harmful effects of radiation on developing organisms. That research showed that mutations can cause problems in developing fetuses and can lead to cancer. He helped explain how genetic material transmits from parent to progeny, and how it functions in developing organisms.