"Induction and Patterning of the Primitive Streak, an Organizing Center of Gastrulation in the Amniote," (hereafter referred to as "Induction") examines the mechanisms underlying early amniote gastrulation and the formation of the primitive streak and midline axis. The review, authored by Takashi Mikawa and colleagues at Cornell University Medical College, was published in Developmental Dynamics in 2004. The article primarily discusses chick embryos as a model organism for nonrodent amniote gastrulation, although it intermittently touches on nonamniote gastrulation for comparative purposes. "Induction" attempts to explain the initiation of cell differentiation and embryo organization, one of the most intriguing processes of embryology.
British embryologist Sir Ian Wilmut, best known for his work in the field of animal genetic engineering and the successful cloning of sheep, was born 7 July 1944 in Hampton Lucy, England. The family later moved to Scarborough, in the north of the country, to allow his father to accept a teaching position. There Wilmut met Gordon Whalley, head of the biology department at Scarborough High School for Boys, which Wilmut attended. Under Whalley's influence, young Wilmut first expressed interest in the life sciences and after graduating high school, he enrolled in the University of Nottingham to study agriculture. It was during his freshman year at Nottingham that Wilmut first came into contact with scientific research. He was mentored by Professor Eric Lamming, an expert in reproductive science and animal physiology, who sparked Wilmut's curiosity with animal genetics. Wilmut 's father, Leonard Wilmut, had diabetes, which eventually brought about blindness and may have been another, more personal factor that stimulated Wilmut's interest in the field. The summer before his graduation from Nottingham, Wilmut completed an eight-week internship at Cambridge in the laboratory of Christopher Polge, a prominent cryobiologist. There, he was introduced to techniques of preserving and manipulating animal cells.