Barbara McClintock worked on genetics in corn (maize) plants and spent most of her life conducting research at the Cold Spring Harbor Laboratory in Laurel Hollow, New York. McClintock's research focused on reproduction and mutations in maize, and described the phenomenon of genetic crossover in chromosomes. Through her maize mutation experiments, McClintock observed transposons, or mobile elements of genes within the chromosome, which jump around the genome. McClintock received the Nobel Prize for Physiology or Medicine in 1983 for her research on chromosome transposition. McClintock's work helped explain the behavior of chromosomes in organismal development and identified transposition as a cause of genetic variation.

The Origin and Behavior of Mutable Loci in Maize, by Barbara McClintock, was published in 1950 in the Proceedings of the National Academy of Sciences of the United States of America. McClintock worked at the Cold Spring Harbor Laboratory in Laurel Hollow, New York, at the time of the publication, and describes her discovery of transposable elements in the genome of corn (Zea mays). Transposable elements, sometimes called transposons or jumping genes, are pieces of the chromosome capable of physically changing positions along the chromosome. The Origin and Behavior explains the mechanics of development that occur in maize kernels, which are plant embryos.

Barbara McClintock conducted experiments on corn (Zea mays) in the United States in the mid-twentieth century to study the structure and function of the chromosomes in the cells. McClintock researched how genes combined in corn and proposed mechanisms for how those interactions are regulated. McClintock received the Nobel Prize in Physiology or Medicine in 1983, the first woman to win the prize without sharing it. McClintock won the award for her introduction of the concept of transposons, also called jumping genes. McClintock conceptualized some genetic material as not static in structure and order, but as subject to re-arrangement and may be altered during development.

Subscribe to Transposons