Eric Wieschaus studied how genes cause fruit fly larvae to develop in the US and Europe during the twentieth and twenty-first centuries. Using the fruit fly Drosophila melanogaster, Wieschaus and colleague Christiane Nusslein-Volhard described genes and gene products that help form the fruit fly body plan and establish the larval segments during embryogenesis. This work earned Wieschaus and Nüsslein-Volhard the 1995 Nobel Prize in Physiology or Medicine. Into the early decades of the twenty-first century, Wieschaus continued his thirty year tenure as a professor at Princeton University in Princeton, New Jersey.
The hedgehog signaling pathway is a mechanism that directs the development of embryonic cells in animals, from invertebrates to vertebrates. The hedgehog signaling pathway is a system of genes and gene products, mostly proteins, that convert one kind of signal into another, called transduction. In 1980, Christiane Nusslein-Volhard and Eric F. Wieschaus, at the European Molecular Biology Laboratory in Heidelberg, Germany, identified several fruit fly (Drosophila melanogaster) genes. They found that when those genes were changed or mutated, the mutated genes disrupted the normal development of fruit fly larvae. The researchers called one of the genes hedgehog (abbreviated hh). Nusslein-Volhard, Wieschaus, and Edward B. Lewis, at the California Institute of Technology in Pasadena, California, shared the 1995 Nobel Prize for Physiology or Medicine for their research on how genes control early embryonic development in fruit flies. The hedgehog signaling pathway is conserved across many animal taxa or phyla, from Drosophila to humans. The hedgehog signaling pathway controls several key components of embryonic development, stem-cell maintenance, and it influences the development of some cancers.
Christiane Nusslein-Volhard studied how genes control embryonic development in flies and in fish in Europe during the twentieth and twenty-first centuries. In the 1970s, Nusslein-Volhard focused her career on studying the genetic control of development in the fruit fly Drosophila melanogaster. In 1988, Nusslein-Volhard identified the first described morphogen, a protein coded by the gene bicoid in flies. In 1995, along with Eric F. Wieschaus and Edward B. Lewis, she received the Nobel Prize in Physiology or Medicine for the discovery of genes that establish the body plan and segmentation in Drosophila. Nusslein-Volhard also investigated the genetic control of embryonic development to zebrafish, further generalizing her findings and helping establishing zebrafish as a model organism for studies of vertebrate development.
The hedgehog signaling pathway is a mechanism that regulates cell growth and differentiation during embryonic development, called embryogenesis, in animals. The hedgehog signaling pathway works both between cells and within individual cells.
Bicoid is the protein product of a maternal-effect gene unique to flies of the genus Drosophila . In 1988 Christiane Nüsslein-Volhard identified bicoid as the first known morphogen . A morphogen is a molecule that determines the fate and phenotype of a group of cells through a concentration gradient across that developing region. The bicoid gradient, which extends across the anterior-posterior axis of Drosophila embryos, organizes the head and thorax.