'On the Permanent Life of Tissues outside of the Organism' reports Alexis Carrel's 1912 experiments on the maintenance of tissue in culture media. At the time, Carrel was a French surgeon and biologist working at the Rockefeller Institute in New York City. In his paper, Carrel reported that he had successfully maintained tissue cultures, which derived from connective tissues of developing chicks and other tissue sources, by serially culturing them. Among all the tissue cultures Carrel reported, one was maintained for more than two months, whereas previous efforts had only been able to keep tissues in vitro for three to fifteen days. Carrel’s experiments contributed to the development of long-term tissue culture techniques, which were useful in the study of embryology and eventually became instrumental in stem cell research. Despite later evidence to the contrary, Carrel believed that as long as the tissue culture method was accurately applied, tissues kept outside of the organisms should be able to divide indefinitely and have permanent life.
Alexis Carrel was a doctor and researcher who studied tissue cultures. He continued Ross Granville Harrison's research and produced many improvements in the field of tissue culture and surgery. He was the recipient of the 1912 Nobel Prize in Physiology or Medicine for his development of surgical techniques to repair blood vessels. Carrel was born on 28 June 1873 in Sainte-Foy-les-Lyon, France, to Anne-Marie Ricard and Alexis Carrel Billiard. His father died when he was five years old. Carrel earned a bachelor's degree in letters in 1889 and another in science in 1890 from St. Joseph's Day School in Lyon, France. He entered medical school at the age of seventeen and was regarded as a good but not exceptional student. The assassination of Sadi Carnot, a French politician visiting Lyon who was stabbed in the abdomen and died from the loss of blood, further interested him in surgery.
In the 1910s, Alexis Carrel, a French surgeon and biologist, concluded that cells are intrinsically immortal. His claim was based on chick-heart tissue cultures in his laboratory that seemed to be able to proliferate forever. Carrel's ideas about cellular immortality convinced his many contemporaries that cells could be maintained indefinitely. In the 1960s, however, Carrel's thesis about cell immortality was put into question by the discovery that human diploid cells can only proliferate for a finite period. As it was gradually recognized that chick cells only have a finite proliferative life span in vitro as well, historians and scientists alike attempted to identify experimental errors that could have led to the extremely long life of Carrel's "immortal" chick-heart tissue cultures. Those reassessments not only point out potential experimental mistakes in pioneer tissue culture work in the early twentieth century, but are also relevant to current discussions about the different life spans of germ line cells, embryonic and adult stem cells, normal somatic cells, and cancer cells.
Alexis Carrel, the prominent French surgeon, biologist, and 1912 Nobel Prize laureate for Physiology or Medicine, was one of the pioneers in developing and modifying tissue culture techniques. The publicized work of Carrel and his associates at the Rockefeller Institute established the practice of long-term tissue culture for a wide variety of cells. At the same time, some aspects of their work complicated the operational procedures of tissue culture. Thus Carrel's legacy had a mixed influence on the development of tissue culture techniques, which have been widely used in the fields of embryology and stem cell research.
The hanging drop tissue culture is a technique utilized in embryology and other fields to allow growth that would otherwise be restricted by the flat plane of culture dishes and also to minimize the surface area to volume ratio, slowing evaporation. The classic hanging drop culture is a small drop of liquid, such as plasma or some other media allowing tissue growth, suspended from an inverted watch glass. The hanging drop is then suspended by gravity and surface tension, rather than spreading across a plate. This allows tissues or other cell types to be examined without being squashed against a dish.
A pioneer in experimental embryology, Ross Granville Harrison made numerous discoveries that advanced biology. One of the most significant was his adaptation of the hanging drop method from bacteriology to carry out the first tissue culture. This method allowed for further studies in embryology as well as experimental improvements in oncology, virology, genetics, and a number of other fields. Prior to Harrison's innovation, a number of scientists, including Julius Arnold, Gustav Born, Leo Loeb, and Gottlieb Haberlandt, had attempted to grow tissues in isolation in vitro and in vivo but with much less success than Harrison. In addition, Harrison contributed to the understanding of organization and differentiation.