Johann Friedrich Meckel and Antoine Etienne Reynaud Augustin Serres developed in the early 1800s the basic principles of what later became called the Meckel-Serres Law. Meckel and Serres both argued that fetal deformities result when development prematurely stops, and they argued that these arrests characterized lower life forms, through which higher order organisms progress during normal development. The concept that the embryos of higher order organisms progress through successive stages in which they resemble lower level forms is called recapitulation. Meckel, a professor of anatomy at the University of Halle in Halle, Germany, and Serres, a physician at Hotel-Dieu de Paris in Paris, France, did not work together. Rather, in the late nineteenth and early twentieth centuries, their similar approaches, in which they compared the anatomy and embryos of different species so as to relate stages of embryonic development to the scala naturae, led oher scientists to generalize their individual concepts into one general theory. The recapitulation ideas of Meckel and Serres became part of the mid-eighteenth century debate about how to explain morphological similarities between species.
The biogenetic law is a theory of development and evolution proposed by Ernst Haeckel in Germany in the 1860s. It is one of several recapitulation theories, which posit that the stages of development for an animal embryo are the same as other animals' adult stages or forms. Commonly stated as ontogeny recapitulates phylogeny, the biogenetic law theorizes that the stages an animal embryo undergoes during development are a chronological replay of that species' past evolutionary forms. The biogenetic law states that each embryo's developmental stage represents an adult form of an evolutionary ancestor. According to the law, by studying the stages of embryological development, one is, in effect, studying the history and diversification of life on Earth. The biogenetic law implied that researchers could study evolutionary relationships between taxa by comparing the developmental stages of embryos for organisms from those taxa. Furthermore, the evidence from embryology supported the theory that all of species on Earth share a common ancestor.
Friedrich Tiedemann studied the anatomy of humans and animals in the nineteenth century in Germany. He published on zoological subjects, on the heart of fish, the anatomy of amphibians and echinoderms, and the lymphatic and respiratory system in birds. In addition to his zoological anatomy, Tiedemann, working with the chemist Leopold Gmelin, published about how the digestive system functioned. Towards the end of his career Tiedemann published a comparative anatomy of the brains of white Europeans, black Africans, and Orangutans, in which he argued that there were no appreciable differences between the structure of the brains of blacks, women, and white European men that would suggest they were intellectually different. Tiedemann also researched the embryonic development of the brain and circulatory systems of human fetuses.
Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of that organism's species (phylogeny). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in it's evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution. Gould notes that the concepts of acceleration and retardation during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection acts.
Johann Friedrich Meckel studied abnormal animal and human anatomy in nineteenth century Germany in an attempt to explain embryological development. During Meckel's lifetime he catalogued embryonic malformations in multiple treatises. Meckel's focus on malformations led him to develop concepts like primary and secondary malformations, atavism, and recapitulation- all of which influenced the fields of medicine and embryology during the nineteenth and twentieth centuries.