The Notch signaling pathway is a mechanism in animals by which adjacent cells communicate with each other, conveying spatial information and genetic instructions for the animal's development. All multicellular animals utilize Notch signaling, which contributes to the formation, growth, and development of embryos (embryogenesis). Notch signaling also contributes to the differentiation of embryonic cells into various types of cells into various types of cells, such as neurons. Research into the Notch gene in fruit flies began in the early twentieth century, but not until the end of the twentieth century did researchers begin to uncover, in many different species, the roles of Notch proteins for cell to cell signaling. Researchers have also found that dysfunction in the pathway can contribute to diseases such as cancer and Alzheimer's.
Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity. Interactions between epithelium and mesenchyme control the development and differentiation of many parts during embryonic development, including structures like the gastrointestinal tract and hair. Thus, the realization that mesenchyme drives induction and differentiation during epithelio-mesenchymal interactions had far-reaching effects.
George Otto Gey was a scientist in the US who studied cells and cultivated the first continuous human cell line in 1951. Gey derived the cells for that cell line, called the HeLa cell line, from a woman called Henrietta Lacks, a Black woman who had cervical cancer. Cell lines are a cluster of cells that continuously multiply on their own outside of the organism from which they originated. Gey developed new techniques for in vitro, or laboratory-based, maintenance of organs and hormonal tissue, created new methods for cell cultivation, and researched nutritional media, or cell food. Much of his research involved tissue culture, which is the process by which cells are grown under controlled conditions. He also founded what is now known as the Tissue Culture Association, or the TCA, which centered around furthering laboratory research around tissue culturing. By introducing new techniques and methods to cultivate human cells, Gey expanded the laboratory techniques around cell cultivation and helped contribute to a deeper understanding of the human body for future scientific research.